VRIJE UNIVERSITEIT
AMSTERDAM

SUBFAKULTEIT PSYCHOLOGIE
VAKGROEP FUNKTIELEER EN METHODENLEER
DE BOELELAAN 1115 1081 HV AMSTERDAM-BTV.

'COGNITIVE ENGINEERING'

A conference on the psychology of
problem solving with computers

Vrije Universiteit Amsterdam

10 - 13 Augustus 1982

MINI-PAPERS

P

-3

This cenference
is

sponsored by

CONTROL DATA

Postbus 111
2280 AC Rijswijk Z.H.
Telefoon (070) 949344
Telex 33037

B.V.

COGNITIVE ENGINEERING

A conference on the psychology of problem solving with computers
Vrije Universiteit Amsterdam
10 - 13 augustus 1982

Organising committee:
Thomas Green, Sheffield
Gerrit van der Veer, Amsterdam

Program committee:

Thomas Green, Sheffield
Jean-Michel Hoc, Paris

Anker Halms Jdrgensen, Copenhagen
Susanne Maass, Hamburg

Steve Payne, Sheffield

Gerrit van der Veer, Amsterdam

Congress secretariat:

Elly Lammers,

Subfaculteit Psychologie

Vrije Universiteit

De Boelelaan 1115, Prov.I.B.112
1081 HV Amsterdam

The Netherlands

Tel.: + 31 20 548 3870/3869

Registration:

Main Hall, main building (Hoofdgebouw)
Vrije Universiteit

De Boelelaan 1105

Amsterdam

Paper session:
Universiteitsraadzaal, tloofdaebouw
Vrije Universiteit

De Boelelaan 1105

Amsterdam.

BEN NN UES NG NN ONN GNN OEN GuN OGNS OON OGNS GOS GG BNN GOF M GBS NS BN GO MBS B AW

Table of contents:

i e

M.3. Tauber

E. Nullmeier/
K. Roediger

I. The psychclogy of the

Timetable

I. The psycholoqy of the computer user, a. general

N. Hammend, A.Maclean, Knowledge fragments and users' models

P. Barnard of the system.

K. Bd Human interaction with graphics systems
J. Preece Graphs are not straightforward (z 7
S.J. Payne

The perception of grammars: higher 7
order rules) ?

Psychology of programming, - general Z;
aspects and aspects of teaching and
learning of programming language.

Developing an instrument for the
analysis of cognitive activities <::>
of workers at dialogue systems

computer user, b. the programmer

G.C. v.d.Veer,
J.v.d.Wolde

H.E. Sengler

J.M. Hoc

J.H. Kahney
R.P. v.d. Riet

W.Volpert,
R. Frommann

P .Naur

H.D. Btcker, G.Fischer,
R. Gunzenhduser

Individual differences and aspects 7
of control flow notation :

A model of the programmer's abilities

to understand program semantics and ¢
its impact on program(ming language)
design.

Analysis of beginners' problem-solving <:>
strategies in programming.

Problem solving by novice programmers

Measuring the performance of students in
an introductory informatics course. <

Software assessment from the viewpoint 7
of the psychology of acticn.

Program development studies based on 5?
diaries '

Project INFORM: The function of integrated

13
15
29

6 &£

53
65

67

information manipulation systems (IMS) to) ngézf'
support man-machine-communication v 143

11. Fécilitating,human—cgmpuﬁer interaction, a. Tocls and aids:

B. Senach
S. Hagglund

T.R.G. Green
A. Arblaster

Computer aided decision making with
graphical display of information

The case for control independence in)
dialogue-oriented scftware. i

145
147

155 Zi:;:;

Display of program structure - why and how? 165 C&:F::

The evaluation of a programming support
environment

m7ge.

") abstract not available at time of reproductiocn

Table of contents:

Timetable

II. Facilitating human-computer interaction, b. system design issues 175

S. Maass Why systems transparency? 177

L. Pinsky What kind of '"dialogue" is it when working 7

vith a computer?

A.H. Jgrgensen Naming commands: an analysis of designers

naming behaviour

185 ,

|) 7

A. Dirkzwager Inside and outsice the system, problems of
communication, interacticn and understanding 2:;‘:
in a programmable enviricnment. 195

") abstract not available at time of reproduction

ARENT JANSZOON ERNSTSTRAAT

T
c et | s RO 8 N b
72
: = C -
5 L
£ b= / f
A L S———— . . e e ek
£ o : - poooon | | AN et
[natuur/ —
.m sterrenku mﬂ wiskunde [Mgcheikunde Merdwsien- . e wm_u _U
= psychologie schappen g - = H_ __L
= } e s = S
O O e
B AT 8

Ed 1 & | genebdkunde

VRIJE UNIVERSITEIT e H

Amsterdam-Buitenveldert

m NSRRI IRERRRNNN0 IR

y .
BUITENVELDERTSELAAN
S
é: 3
(

VAN DER BOECHORSTSTRAAT

alpha-faculteiten H = W
m”"ﬂ rsiteitsbestuur i i e L
M..w-: ale diensten N E :ﬂ \
ﬁ ibliptheek :
: DGEBOUW X 7‘ 3 L
.m — L LN . e
B | A& e
£ = .
H\ ﬁﬁ jL tandheelkunde _”—...mau_u.o...:.:_ —J Q/
~/ C — j / ing)
& (P) 4rote parkeerplaats DE BOELELAAN _
R (Ma 6B mlinks \ (_ //
D \ . 1 ® \ \C ®) LN \
ReGISTRATION \.PAPER SESSONS

Bus stoP (1™ FlooR)
SN I BNN B NN G BN B BN GBS BN IS OGN B0 BN Go B G BN BN G BN Gm =

Timetable

Tuesday 10 august

13.00 - 17.00 registration
exhibition of books on computers & psychology

10.00

10.30

11.00
11.45
12.30
13.30
14.15

15.00
15.30

16.15

17.60

2.00

2.45
10.30
11.00
11.45
12.30
13.30
14.15

15.00
15.30

Wednesday 11 august

Opening session, chairman G.C. van der Veer (Amsterdam)

Prof. Dr. H. Verheul, Opening of the conference

Dean of the Vrije Universiteit

Coffee

1. The psychology of the computer user

a. General, chairman M. Zoepprits (Heidelberg)

N. Hammond, A.MaclLean, Knowledge fragments and users' models of the

P. Barnard (Cambridge) system.

K. B (Trondheim) Human interaction with graphics systems

Lunch

J. Preece (Milton Keynes) Graphs are not straightforwvard

S.J. Payne (Sheffield) The perception of grammars: higher order rules &

Tea

M.J. Tauber (Paderborn) Psychclogy of programming, - general aspects and
aspects of teaching and learning of programming
language.

E. Nullmeier/K. Roediger Developing an instrument for the analysis of

(Berlin) cognitive activities of workers at dialogue

systems.

Reception offered by the University

Thu

rsday 127 august

I. The psychology of the computer user

b. The programmer, chairman J.M. Hoc (Paris)

G.Civ
b T [
H.E’

.d.Veer (Amsterdam)
Wolde (Twente)
Sengler (Hamburg)

Coffee
J.M. Hoc (Paris)

J.H. Kahney (Milton Keynes)
Lunch
R.P. van de Riet (Amsterdam)

W.Volpert/R.Frommann (Berlin)

Tea

P'

Naur (Copenhagen)

16.15 H.D.Bocker/G. Fischer/

R.

Gunzenhiuser (Stuttgart)

Conference dinner
(time to be announced)

Individual differences and aspects of control
flov notation.

A model of the programmer's abilities to
understand program semantics and its impact on
program(ming language) design.

Analysis of beginners' problem-solving
strategies in programming.
Problem solving by novice programmers.

Measuring the performance of studerts in an<12:
introductory informatics course.

Software assessment from the viewpoint of the<:¢:
psychology of action.

Program development studies based on diaries. &€&
Project INFORM: The function of integrated
information manipulation systems (IMS) to <<
support man-machine-communication

-
= b
CRE

—
o

p—
~

.00
45
.30
.00
<45
.30
.30
.15

.00
.30

s 15

.00

-9-
Friday 13 august

II. Facilitating human-computer interaction

a. Tools and aids, chairman E. Edmonds,

B. Senach (Le Chesnay) Computer sided decision making with
graphical display of information

S. Higglund (Link&ping) The case for control independence iri <:3<L
dialogue-oriented software.

Coffee

T.R.G. Green (Sheffield) Display of program structure - why and how? <<

A. Arblaster (London) The evaluation of a programming support <<
environment

Lunch

b. System design issues, chairman F. van der Ham, (Amsterdam)

S. Maass (Hamburg) Why systems transparency?
L. Pinsky (Paris) What kind of "dialogue" is it when werking
with a computer?
Tea
A.H. Jdrgensen Naming commands: an analysis of designers' <::<:_
(Copenhagen) naming behaviour
A. Dirkzwager (Amsterdam) Inside and outside the system, problems of <

communication, interaction and understanding
in a programmable environment.

Closing session, chairman T.R.G. Green, (Sheffield)

Prof. J.M. van Corschot, (Amsterdam)

-10-

S

I. THE PSYCHOLOGY OF THE COMPUTER USER

a. General

-12-

<15«
KNOWLEDGE FRAGMENTS AND USERS' MODELS OF THE SYSTEM

Nick Hammond, Allan MacLean & Philip Barnard
MRC Applied Psychology Unit, Cambridge

To Tearn and use a complex interactive system efficiently, users
have to structure the information concerning the system. This information
includes the user manual and any help facilities in addition to details of
the interface and task. The bhetter the structuring, the more usable the
system. While the ideal may be for the user to have a unified model of
the whole system, this rarely seems to be achieved in practice for several
reasons. First, it may be impossible to create a single metaphor adequate
for dealing even with a section of any real system (Halasz & Moran, 1982).
Second, the information structures generated by users in the course of
learning may typically not be unitary: even when a good metaphor is
available, the user's concept of the system is usually fragmented, with
each fragment having a restricted sphere of applicability.

We illustrate this aspect of users' information structures through
examples taken from studies of user difficulties in three contrasting
interactive systems. One of these is reported in Hammond, Long, Clark,
Barnard & Moriton (1980). Several general themes emerge. First, users tend
to form partial or fragmentary information structures to explain and
predict local aspects of the system. One knowledge fragment may be quite
independent of or even inconsistent with another fragment if they address
the same area. For instance, in one system users conceptualised the screen
either as a tabula rasa on which relevant material could be written or
removed at will, or as an information display controlled by the system and
modified only via indirect commands. Contexts in which these roles were
mixed caused difficulties. Second, users do not always successfully access
at the appropriate time such knowledge fragments as do exist, although they
may quickly realise their error: "I'm always doing that" is a common enough
response to a system error message. Third, particularly during the early
stages of learning, users seem to use very little evidence before forming
an explanatory fragment (Lewis & Mack, 1982). However, once a fragment which
successfully predicts some aspect of system behaviour has been formed, users
are loth to reject or even modify it. Thus in one system, the screen cursor
could be moved either by MOVE Keys (to an adjacent character cell) or by TAB
Keys (to an adjacent input field). Users who learned through the training
manual about these keys in the context of a menu with only a single input

14—

field found that the TAB Keys had no observable effect while the MOVE
Keys behaved as expected. Typically, from this single learning trial,
such users never attempted to use the TAB Keys again in a further two
days of training.

These themes have consequences both for the learning and for the
use of systems. Early examples are especially potent for forming user
knowledge fragments, both appropriate and inappropriate, and should
therefore be chosen with discretion. Following initial learning, the
user can be helped in accessing the suitable fragment by the provision
of signposts, clues to relevant aspects of the local task and system
contexts, emboided in display headings and layout, in documentation
and in error messages. The presentation of the system should both
encourage the creation of a well-structured set of knowledge fragments
and provide signposts to their use.

References

Halasz, F. & Moran, T.P. (1982). Analogy considered harmful. Proceedings
of Human Factors in Computer Systems, pp 383 - 386.

Hammond, N.V., Long, J.B., Clark, I.A., Barnard, P.J. & Morton, J. (1980).
Documenting human-computer mismatch in interactive systems. Proceedings'
of 9th International Symposium on Human Factors in Telecommunication,
pp 17 - 24,

Lewis, C. & Mack, R. (1982). Learning to use a text processing system:
Evidence from "thinking aloud" protocols. Proceedings of Human Factors
in Computer Systems, pp 387 - 392.

-15-

HUMAN INTERACTION
WITH GRAPHICS SYSTEMS

by

Ketil BO
Stiftelsen for industriutvikling
P.0.Box 660
N-7001 Trondheim
NORWAY

o f e

INTRODUCTION

The graphics presentation techniques must be adapted to the human peculiarities
in order to convey the desired messages as accurate and natural as possible
from the computer to the user.

These messages may range from pure information represented by a single value

to pure esthetic, represented by an artistic picture. To make this possible,
the users perceptual and cognitive processes must be taken into consideration
during the development of the graphics presentation techniques.

1. THE HUMAN EYE

The human eye is a radiant energy receiver, sensitive to the 0.4 to 0.7 um
band of the spectrum.

The human focuses the image of any object onto the retina by means of the
lenses. On the retina is a complex mosaic of two types of receptors, the
rods and cones. The rods are generally sensitive to light. The cones, which
are less sensitive, contain absorbing filters for blue, green and red and’
therefore give the colour information to the brain.

A Blue
1 Green Red
4+
t f t } >
400 500 600 700 mm
Wavelength
Fig. 1. The eyes pigment absorption curve.

There are, however, experiments that indicates that the rayes are not colour-
making in themselves. Rather they are bearers of information that the eyes
uses to assign appropriate colours to various objects in an image. It seems
that the eye perceives colour by comparing longer and shorter wavelength and
the experiments shows that 588 nm is the balance point between short and long
wavelengths in this context [l].

The receptors in the eye contain an organic substance, rhodopsin. Incoming
radiant energy causes a chemical reversible transformation in this material
which generates electronical signals that are transmitted to the brain by
fibers of the optic nerve.

This transformation of rhodopsin has its own build up time and decay time

and acts as a low pass filter which explains why the eye accepts the pulsating
beam of the CRT as long as the refresh rate does not drop below the flicker
frequency limit.

=1 T

The fibers of the optical nerve can be devided into two categories; fibers
that are only sensitive to luminance and fibers that are only sensitive to
colours. To exploit fully the capabilities of the human vision, the infor-
mation should therefore be given in colours.

The retinal image is transformed into a visual cortex of the brain by means
of a complex set of processes which we are now beginning to understand.

1.1 The constancy factor

One of those processes is known as the constancy effect which makes a dark
grey area look dark grey in all sorts of light. The reason for that effect
is that the perceived grey scale is dependent on the ratio between the light
intensities of the particular area and the light intensities reflected from
adjacent regions.

This is demonstrated by a constant grey disk with a changing ring around.
The shade of the disk seems to change from light to medium to dark grey as
the ring light is first made twice as intense, then four and eight times as
intense than the light of the disk.

T

Fig. 2. Constant grey disk with changing ring.

The same goes for colour: a bright yellow disk change to dark brown when
surrounded by a ring of high intensity white light.

1.2 The contours

Another important feature in the visual process is the contours. Contours
are so dominant in our visual perception that when we draw an object, it is
almost instinctive that we start by sketching its outline. We see contours
when there is a contrast, or difference, in the brightness or colour between
adjacent areas. In fact the visual system tends to abstract and accentuate
the contours in patterns of varying contrast. This phenomena called the Mach
bands is seen as a narrow dark band at the dark edge and a narrow bright

band at the bright edge.

Fig. 3. Mach band in a contour.

~16-

It seems to be an universal principle that contours are enhanced and uniform
areas are lost. (Ex. copying of a uniform black area.) Another interesting
contour effect can be demonstrated by separating two identical grey areas
with a special contour that has a narrow bright spur and a narrow dark spur.
Although the two uniform areas away from the contour have same objective
luminance, the gray of the area adjacent to the light spur appears to be
lighter than the grey area adjacent to the dark spur. This demonstration
shows that the contours have effect also on the objective uneffected areas of

the images. [2]

1.3 Perceptionof transparency

We may distinct between physical and perceptual transparancy, because they
are not always found together.

Transparancy is perceived when one sees not only surfaces behind a transparent
medium, but also the transparent medium itself. (Pure air is not perceived

as transparent.) On the other hand it is possible to generate the illusion
of transparency even if it is not physical.

What causes then perceptual transparency? As with other visual phenomena,
the causes must be sought in the pattern of stimulation and in the processes
of the nervous system resulting from the retinal stimulation.

Some of the conditions for perceiving transparency is known:

First of all perceptual transparency depends on the spatial and intensity
relation of light reflected from a local area.

If the light reflected from two different colours reaches the same retinal
region, an intermediate colour will generally be perceived. It turns out,
however, that if both the transparent object and the background object are
perceived as independent objects, both colours can be seen. This phenomena

is called colour splitting and works in a direction opposite to the well known

colour fusion.

The proportion of the stimulus colour going to each of the perceived surfaces
can be described by the formula:

p =aa + (1 -)t

where & stands for the proportion of the colour in the opaque layer a. The
remainder of the colour goes to the transparent layer t.

There are both special colour conditions and figural conditions for perceiving
transparency.

The colour condition can be derived from the given formula. The main spatial
conditions for perceiving transparency are:

- Figural unity of the transparent layer.
- Continuity of the boundary line of the underlaying layer (visible).

- Adequate stratification of the surfaces. [3]

s] e

1
a'b \\ /(1 a’)t’

p-aai+(1 ot OR a g": q abi (1 o)t OR a ? v
)

Fig. 4. Colour splitting in connection with transparency.

1.4 Perception of Shapes

A graphical image of a real object is a two dimensional representation built
up by primitive elements such as points, lines and polygons.

This representation must be presented in such a way that the observer
perceives a true model of the real object.

To achieve this, the human capabilities of perceiving shapes must be . under-
stood and utilized.

The visual processing by the brain begins in the lateral geniculate body
which continues the analysis made by the retinal cells. In the cortex
"simple" cells respond strongly to line stimuli, provided that the position
and orientation of the line are suitable for a particular cell. The visual
cortex rearranges therefore the input in a way that makes lines and contours
the most important stimuli.

Movement is similarly handled by specific cells which are most sensitive to
particular rates and directions, and is therefore also an important stimulus
factor for the visual processes. The further organization of the visual
information is closely studied by the gestalt psychologists which has
generalized their results into five organizational principles [4]:

20

1. The perceptual field is structured into figure and ground.

Typically we see the figure in greater detail than the
ground and perceive it as being in front.

Another important aspect of the figure-ground relation is that it can
be reorganized spontaneously and very rapidly.

Perception of other relations are also subject to sudden reorganization.

Fig.

5. Ambigious figures.

2. The grouping of elements into wholes depends on the properties of the
elements and their arrangements.

i) Grouping depends
ii) Grouping depends
iii) Grouping depends
iv) Grouping depends

on
on
on
on

proximity
similarities

good continuation
closure

3. Organized wholes tend towards closure, simplicity, symmetry and

regularityv.

Fig. 6.

Tristable shapes (The Necker cube).

4. Organized wholes tends to be perceived as objects.

5. Objects are perceived as having constant properties.

We perceive an rotating object moving away from us in changing
lighting conditions as having constant shape, size and colours.

wid L

1.5 Depth perception

Another important factor for Computer graphics is the visual mechanisms for
perceiving depth from the retinal images which is pure two dimensional. It
is possible to judge distance from a visual image by using indirect cues
such as the angle subtended by an object of known size, the effort of
focusing the lense of the eye or the effect of motion parallax, but these
cues can not be used in all situations and they are not as accurate or
immediate as the powerful sensation of depth comming from the binocular
vision system.

The binocular vision system split the impulses from the right part of the two
retinas to the right side of the visual part of the brain and the impulses

from the left halves to the left side of the visual part of the brain.

Utilizing the binocular parallax the distance to the object is predicted.

1.6 Perceived movement

As we have seen, the visual system has its own specialized cells for detecting
direction and rates of movement. From the experience with films etc. we know
that it is possible to perceive movements from a serie of pictures shown

with close intervals. But what is the relation between the perceived movement
and time intervals which create the illusion?

To answer this an experiment was performed by Wertheimer f5] which used a pair
of lines each presented very briefly (about 50 ms) in rapid succession. The
time interval between '"on'" and "off'" time for the lines was then varied:

First stimulus l ’/’,

Second stimulus ’

Direction of
perceived \\\j TNy

movement

Fig. 7. Perceived movement.

when the interval between the two exposures was less than 25 msec., the two
lines was seen as being simultaneously present with no motion at all. When
the interval was longer than 200 msec., the two lines was seen as appearing
successively, but without any movement between them. The illusion occurs

when the time interval is manipulated in the lower part of the range, between
about 25 and 400 milliseconds. As the interval is increased gradually from

25 milliseconds, the appearance of simultaneity gives way to that of movement.
The first line appears to move part of the distance toward the second and then
disappears. Then the second line appears, displaced toward the first, and
moves toward its own actual location.

-0

With further increases in the time interval between the two flashes, the
distance between the disappearance of the first line and the appearance of
the second diminishes until the observer perceives what is called optimal
movement: a single line moving smoothly and continuously across the space
from its origin to its terminus.

As the time interval between flashes is increased still further, optimal
movement continues to be seen, but its speed grows successively slower.
Finally one no longer sees an object moving across the space. Instead most
observers have a sense of movement itself: objectless, "pure" movement,
which Wertheimer calles '"phi movement''. The last stage of the perception is
a slow sequence of flashes as first one and then the other line comes on and
goes off. To sum up: Small variations in the interval of time between the
two flashes produce five distinctly different perceptions: simultaneity,
partial movement, optimal movement, phi movement and succession.

Apparent movement, seems to relate to two mechanisms in the human perception.
One is the amount of time the visual system requires to form the perception
of simple figures. The other is impletion.

From many experiments we know that the visual system takes about 300 milli-
seconds to form the perception of a simple object one is prepared to see.

In other words, one can form certain visual perceptions at an optimum rate of
about three per second. Many kinds of simple stimuli that occur within 300
milliseconds, which is to say at faster than the optimum rate, can interact

so that the occurence of each affects the appearance of the other. For example,
sequences of letters presented at such a rate can be confused by the observer.
He may detect the letters but confuse their sequence. Thus there is something
special to the human visual system about rates in the region of three cycles
per second. One of the results is the illusion of movement. [5]

1.7 Visual illusion

Discrepancies between object and image are particular evident in the distor-
tions of size and shape that occur when certain figures are viewed. These
illusions may arise from our visual mechanisms that under normal circumstances
made the visible world easier to comprehend. These particular manifestations
of the visual processes may cause severe problems for computer graphics leading
to misinterpretations and ambiguities if the necessary precautions are not
taken. The simplest illusion, which also cause a lot of problems, is that
vertical lines looks longer than horizontal lines of equal length. No satis-
factory explanation is found for this phenomena, but all evidence suggest that
the distortions originate in the brain and not in the eye.

The most famous of the distortion illusions is the double headed arrows:

g

PN

Fig. 8. The arrow illusion.

L
llere the arrow with the arrow-head pointing outwards looks shorter than the
one with the arrow-heads pointing inwards.

This illusion is equal to the eyes tendency to expand inside corners of a room
and shrink the outside corners of the structures. The illusion may occur
because the arrows resembles outline drawings of corners seen in perspective.

Another perspective illusion is the railway line illusion where the further
line looks longer than the closer line of same size.

Fig. 9. The railway illusion.

We also have the multistable images which is spontaneous changing the appear-
ance as we look steadily at them. We have already mentioned the figure-ground
pictures. Best known is the Necker cube, which is a line drawing of a
transparent cube.

.

Fig. 10. The tristable Necker Cube.

If one looks steadily at the cube for a while, it will suddenly reverse the
depth. What was the back face now is in the front. The two orientations
will alternate spontaneously, sometimes one is seen, sometimes the other, but
never both simultaneously. This cube is actual tristable because it may also
be seen as a two dimensional figure.

This example shows very clear the problems connected with representing three
dimensional objects in two dimensions. In a sense all pictures are "impossible"
because they have a dual reality. They are seen both as patterns of lines
laying on a drawing surface and as an object depicted in a quite different

three dimensional space. Viewed as patterns they are seen as being two
dimensional. Viewed as representing other objects, they are seen in a quasi-

24—

three-dimensional space. The pictures are also ambigious, because the third
dimension is never precisely defined. In the Necker cube this ambiguity is so

great that the brain never comes up with a single interpretation. [6]

2. COGNITIVE PROCESSES

Other important parameters when graphics presentation is concerned, is how a
human is encoding, storing and retrieving information.

This is particular important for deciding on screen lay-out, promt, messages
and command handling.

HUMAN MEMORY SYSTEM T

Pattern Recognition
and Attention

Input matches Short-Term
Sensory etipe &
- T e, Memory

Register -~

e

Reheareal

Alphabet
= gt letter

I just saw

an A.

THL WORLD

(Stimulus
Appears and Disappears)

Fig. 11. A model of the human information processing system.

2.1 The human information processing system

The sensory register is a very short term register (for vision less than 1/3

of a second) which serves the function of briefly holding the "raw" information

of a simulus until it can be erased or transformed into a new form and sent
further into the system. While the information stays in the register, two

important processes come into play:

1. Pattern recognition, which result in contact between the information
in the sensory register and previously acquired knowledge. The result of

this process is 'labelling" of the information. That means to convert raw

information into something meaningful.

2. Attention, which makes it possible to focus on the relevant information and

filtering out the rest.

Input to the system that have been recosznized and attended is passed to the

a5

short-term memory (STM). The details of the short-term memory is still not

fully understood, but there are strong evidences that a labelled item will stay
only a short time in STM if it is not rehearsed. The capacity of the short-term
memory seems to lay in the neighbourhood of seven unrelated items. Information
can, however, be grouped together and kept in the STM occupying only one ''space'.

Therefore, we are justified in assuming that our memory are limited by the
number of unrelated units or symbols we can master, and not by the amount of
information that these symbols represent. Thus it is helpful to organize our
information intelligently and take full advantages of this in our design of
the human/computer communication process.

Rehearsel, however, can be used to keep the information in the short-term
memory. It seems also to strengthen the representation of the information in
the long-term memory in such way that it is easier to recall later.

Another interesting finding is that a verbal label held in STM is coded acousti-
cally. That means it is easier to mix information that sounds equal, than
information that looks equal.

Finally selected information is sent into an essentially permanent storehouse
called the long-term memory (LTM), which holds all our knowledge about the
world. The information in LTM seems to be coded in many ways acoustically
(we recognize sounds), visually (we recognize pictures) or semantically (we
recognize meanings).

2.2 Recall and recognition

Our everyday experiences tells us that recognition is usually easier than
recall. Only in exceptional circumstances these relationships may be reversed.
We may for instance recall correctly the spelling of a word, only to fail to
recognize that it is correct.

LI \
100
\""‘""’“‘_
90 L RecoqnitiOn
80
70] T T —————————®
60 +
8 B & \
s Lo
Jé 40 + - =
R 53 . N Recal]
8 30 , ;
v 20 1 i
Y, 1 1 ! ___bﬁ.
10 : l :
0 bt + > time
%?n lhr 4hr 1 day 2 day

Fig. 12. Comparison of recognition and recall.

Experiments on words, sentences and pictures show that recognition performance
is extremely high, relative to recall.

Shepard (1967) performed a test with subjects seeing 612 coloured pictures,
their recognition accuracy was 97% when given a two alternative forced-choice

test.

.

Another fact about recognition testing is that performance remains high even
with long retention intervals (up to 120 days). [7]

3. USER PERCEPTUAL AND COGNITIVE SUMMARY

We have discussed a number of human perceptual and cognitive processes which
is important for the understanding and improvement of the praphics presentation
techniques:

- The human eye is directly sensitive to the blue, green and red part of the
colour spectrum and the optic nerve has special fibers for transmitting
colour information to the brain.

—~ The chemical processes on the retina has its own build up and decay time,
which acts as a low pass filter which makes the refreshing of the CRT
acceptable to the eye as long as it is not falling below the flicker
frequency limit.

- The constancy effect makes it easier to comprehend the information on the
graphics surface independent of intensity, shape and size of the objects.

— The contour effect forces concentration on the contour rather than on the
interial of objects, but this effect also strengthen the staircase effect

on the raster devices.

— Perceptual transparency makes it possible to generate transparent objects
on a graphics screen device.

- Utilizing the five organizational principles developed by the Gestalt
psychologists, makes it possible to use relatively simple pictures and still
convey the message.

- By the effect of perceived movement, controlled animation can be achieved.

- Visual illusions may cause problems for computer graphics if the necessary
precautions are not taken.

- The sensory registers keeps the raw information less than 1/3 sec.

~ The short-term memory is limited to about seven independent information units
and without rehersal the information will stay only for a short period.

- Information may be grouped and named, thus occupying only one space in STM.

- Recognition is far more efficient than recall.

REFERENCES

(]
(2]
(3]
[4]
[5]

(7]

v J
Land, H.E.: "Experiments in colour version'. Readings from Scienfitic
Americam
Ratliff, F.: "Contour and contrast'". Image, Object and Illusion,

Readings from Scientific American 1974

Metelli, F.: 'The Perception of Transparency'". Image, object and
Illusion, Readings from Scientific American 1974

Hayes, J.R.: '"Cognitive Psychology. Thinking and creating".
The Dorsey Press 1978

Kolers, Paul A.: "The illusion of Movement'". Reading from Scientific
American 1964

Gregory, Richard L.: "Visual Illusion". Image, Object and Illusion,
Readings from Scientific American 1974

Klatzky, Roberta L.: "Human Memory, Structures and Processes'".
W.H. Freeman and Co. 1975

-28-

-29-

Title: Graphs are not straightforward

Author: Jenny Preece
Centre for Continuing Education
Open University
Milton Keynes MK7 6AA
U. K.

Submitted to: Cognitive Engineering
Amsterdam, 10-13 August 1982

Abstract

In this paper I shall discuss the kinds of errors that pupils
make in interpreting cartesian graphs. The data upon which

the discussion is based comes from two tests.

One of the tests involves interpreting a multiple curve
graph, in which the curves are independent, whilst in the
other test the curves are dependent. Both of these kinds
of graphs are frequently used to display data from computer

simulation programs.

Finally, I shall suggest some guidelines which will help
authors of computer assisted learning (CAL) programs to

design and use graphs more effectively.

-30-

GRAPHS ARE NOT STRAIGHT FORWARD

Introduction

Many extraordinary and unsubstantiated claims are made about
the educational potential of computer generated graphs.
However, little real attention has been given to the funda-
mental concepts involved in graph interpretation. The

ways that students deal with these concepts must be
identified and explained before displays can be designed
which will capitalise on the potential offered by the
interaction, speed of delivery and colour available in todays

microcomputers.

In this paper I will present some empirical evidence which
illustrates the kinds of errors that pupils make in interpret-

ing cartesian graphs.

1.

BT

Multiple curve graphs

Two kinds of multiple curve graphs are frequently used to
display data from computer simulations. The simplest kind
of graph has curves representing independent variables which
pupils have to compare. Sometimes the variables will be
different. More usually the curves will represent the same
variable which has been subjected to different experimental
conditions in the simulation (e.g. the effect of several

temperatures on an enzyme reaction).

In the other kind of multiple curve graphs the variables
represented by the curvesare not independent. Consider, for
example, figure 1 which was produced by a computer simulation
program called POND (Leveridge 1978) designed for pupils of
15-18 years of age. Pupils investigate how the population
levels of the three kinds of organisms are affected by

their own initial population sizes (figure 11), by fishing
and by pollution. The pupils are meant to interpret the
graphs, form hypotheses, test their hypotheses by setting
parameters in the program, examine the results, and reassess
and refine their hypotheses etc. The variables are inter-
dependent, so pupils have to identify and explain cause

and effect relationships.

Pencil and paper experiments have been done to isolate the

kinds of errors that pupils make when there is no interaction
with the computer. Ways of more effectively using the unique
features of the microcomputer will be investigated,based upon

this work, in a future study.

The experiments described in sections 2 and 3 were performed
with 14 and 15 year olds. Empirical evidence suggests however,

that many adults make the same kinds of errors.

=32

Interpretation of graphs with independent curves

Consider figure 2 which shows the time that it takes for three
cars to travel a certain distance along a road. The three
curves are independent. I asked the pupils questions which
required them to interpret theinformation contained in the

graph by comparing the three curves.

I gave written tests to 120 14-15 year old pupils. Protocols

of some of these pupils answers were also collected. Analysis
of the answers that pupils gave revealed the frequent occurrence
of two kinds of errors: concepts related to gradient, and

visual distraction, as described below.

(i) Concepts related to gradient

The following extracts from my data illustrate the kinds
of errors that the pupils made. After each example I
have suggested reasons why the errors occurred. The
questions below are from a series of questions which

the pupils were asked.

Question: Which car is going faster after:
(i) 4 seconds

(i1) 6 seconds

Answers: (1)
Black Blue Red Can't tell

Freq. 7 4 92 8

Answers: (ii)

Black Blue Red Can't tell

Freq. 29 10 67 4

Explanation: Some pupils seem to associate fastestwith
highest. These pupils, therefore, look
for a high value. They do not look for

the line with the steepest gradient or

even for an interval. It is interesting

Question:

Some

Pupils

-33-
that fewer pupils were misled by the

red car's line in the second question.
This is probably because all the lines are
closer to the top after 6 seconds than
after 4 seconds. In fact, the line
representing the black car is highest

at 63 seconds.

Does black overtake blue, or does blue overtake

black?

Responses: K.C. Black overtakes blue. Because the black

goes further up the page than the blue.
G.H. Black overtakes blue. The end of the line
is further up the road.
R.D. Black overtakes blue. Because it is going

higher at the end.

Explanation:K.C. associates overtaking with being furthest.

G.H. makes the same association as K.C. This
pupil (G.H.) is also interpreting the graph
very visually; the line is seen as a road.
(See the next section on visual distractors
for further explanation.)

R.D.'s association of furthest ;nd highest

is quite obvious.

These results, plus those cited by Janvier (1978) from a

similar study with younger pupils (mostly aged 11-12 years)

indicate that many pupils are not able to interpret changes

in intervals. Pupils who do not have these basic skills

will not benefit from using computer simulations which

display data in graphs.

(ii)

-3l

Visual distractors

The term "visual distractor" was used by Kerslake (1977)

to describe some graphs which seem to set up strong
conflicts for students with poorly developed interpretation
skills. These graphs are interpreted in terms of 'concrete'
forms which can be related to the situation depicted in

the graph. Time and distance graphs, for example,are

interpreted by many pupils as if they are a hill or a map.

In the following examples pupils interpreted figure 2

(Three cars travel along a road) as though it was a

road (J.S., D.V.) or as though the lines represented
cars (C.H., N.B.)

Question: What happens to the red car? (Does it speed

up, slow down or what?)

Pupils
Answers: J.S. It turns off to the right.
C.H. It crashes.

Question:, Does Black overtake blue, or does blue

overtake black? How can you tell?

Pupils .

Answers: D.V. Black overtakes blue. You can tell
because the black car went a different
route.

N.B. Black overtakes blue. Because they
cross at the same time and then black

moves ahead.

Explanation: The answer given by N.B. is a hybrid between
interpreting the graph with relation to its
content and interpreting it symbolically.

Many levels of hybrid answer have been observed.
Pupils appear to seek explanations in terms
of concrete objects when the interpretation
task becomes too abstract and demanding for

them.

The message that these results convey is the importance
for pupils, of being able to relate the abstract lines

of the graph to a familiar situation.

Strategies for interpreting graphs with multiple interdependent curves

A pilot experiment was performed in which six subjects were given
the graph in figure 3. This graph is adapted from a graph in an
Ordinary level, General Certificate of Biology text. The task
(question) which the pupils were asked was "describe what is
happening in the stream'". The pupils had learnt about the

biological concepts shown (e.g. photosynthesis) in previous

lessons.

Analysis of the pupils' transcripts revealed a range of competence.
Very weak pupils tended to treat each curve independently,

with little reference to the situation. These pupils usually
point to particular points on the curve and do not compare

and relate levels and gradients along the curve. This is
illustrated by a short excerpt from H.B.'s transcript. After

encouragement H.B. began to compare and relate the sections of

the curve.

H.B. It (points at curve for oxygen) starts off high

Researcher.Thats fine can you look at it a bit more carefully
this time and describe in a little more detail

what is happening?

H.B. Well,it goes sharply down and then it goes gradually
up.

The other pupils were able to describe gradients relationally.
Most pupils explained that the changes in the curves had been
caused by the sewage. A few pupils attempted to inter-relate

the curves in similar ways to the excerpt from M.D.'s transcript.

M.D. After the sewage goes in the amount of oxygen
in the water goes down. This then causes the

small green plants to go down. No the amount of

~36~-

small green plants goes down so the amount of

oxygen goes down.

None of the pupils, however, were able to adequately relate
the graph to the situation. Very few pupils could extrapolate the
curves and suggest that the levels of the organisms and

substances would return to their original levels.

Cause and effect relationships were not sought by many pupils and
hardly any pupils suggested hypotheses to explain the events shown

in the graphs.

The message from this work is that pupils have a great deal
of difficulty interpreting these kinds of graphs. They do not
inter-relate the curves. There is no reason to think that they

would perform differently with computer generated graphs.

Conclusions: some guidelines

The results of this work indicate the need for a set of guidelines
for authors of CAL materials. Authors should not assume that
graphs generated by microcomputers are easier to interpret than

graphs on paper. In particular CAL designers should:

1. try to ensure that artifacts are not included which encourage

pupils to mis-interpret the graph as a concrete form.

2. not make assumptions about dynamic delivery. Work by
Avons et al (Report No.1) does not support the belief
that dynamic displays encourage pupils to develop intuitive

concepts about gradients.

3. avoid using symbols which will mislead pupils (e.g. one
pupil thought that the arrow in figure 3 meant that

the sewage was rising).

4. carefully consider the importance of scales. Pupils whoare
weak at interpreting trends in daga tend to read absolute
values. This seems to cause an overload of information and
impedes interpretation. In any case a V.D.U. display is not

suitable for making accurate readings.

-37-

REFERENCES

Avons, S.E., Beveridge M.C., Hickman A.T., and Hitch G.J.

Report No.l. Microprocessors in Education Research
Project. University of Manchester. '"Teaching journey
graphs with microcomputer animation: effects of
spatial correspondence and degree of interaction.

An experimental study'.

Kerslake D. (1977) M. Phil. Thesis Chelsea College, University

of London. "The Concept of Graphs in Secondary School

Pupils aged 12-14 year".

Janvier, C. (1978) Phd. Thesis. University of Nottingham.

"Interpretation of complex cartesian graphs representing

situations - studies and teaching experiments".

Tranter, J.A., and Leveridge, M.E.
Chapter 4 Pond Ecology in Computers in the biology
curriculum edited by Leveridge, M.E. 1978. Edward
Arnold (Publishers) Ltd.

ACKNOWLEDGEMENTS
I would like to thank my supervisor Tim O'Shea for his help

and also Marc Eisenstadt and Ann Jones for help and advice

on drafts of this paper.

-38-

4000 FISH
P~ —
(o]
|00 HERBIVORE' S

LM'LLIONS)

M

PHYTOPLAN KTON
(Riteions)

M

T F M Q@ ™ F ¥ & S ©o N O

~Q

Figure 1. Graph produced by the computer simulation

POND (Leveridge 1978)

Distance 100 sinee ; : :
travelled
in metres
l along road,
90 7 i
' H
l 80 HH T H1 3 ; : H
8 70 s
l 60 &
i 50
i 11 H 3-—
5 40 s
30f= HTH T T
i - -
tHH
20} : T i
l %E: HEEHT T : H H HiH
jiggias:
l 0 1 2 3 4 5 6 7 8
Time in seconds
Figure 2 Graph of three cars travelling along a road
I (Swan M. The Language of Graphs. Shell Centre for Mathematics Education,
' Nottingham.)

-40-

= - - e o e wmw e wy

[~ 9‘-:’ 3'—!'\

Sssaes small geeen plants

SQ,Wa.ac

oo @ @ o o oeawy

clean walsw animals

.o Qr‘h.ﬂ\a\s u)“"\\.c.h l:;/g,

on Jrod ma."m'ql,

sewoye

dstonce down skream.

Figure 3. Pollution of a stream by sewage

A 4

i

Steve Payne

The Perception of Grammars: Higher-Order Rules

8, J. Payne

MRC/SSRC Social £ Applied Psychology Unit
Department of Psychology
The University
Sheffield S10 ZTN, U.K,

i, The Problem

A serious problem in the design of languages for casual users, occasional
users, novices, etc, is to make the language easy to learn., The unthinking answer
is to construct a small language, as though a small language would necessarily be
easier to learn than a big one. The goal of this paper is to explore more
satisfactory answers based on psychological principles of organisation and
structure, and to relate these answers to the intuitions of computer experts and the

findings of software psychologists,

What kind of language? Almost any artificial one, Examples would include!
the command languages for word-processors, data base retrieval systems,
computer-aided design systems, and other end-user packages} job control languages
for large computer systems, and operating system commands for small ones;
miniature artificial languages created for experimental purposes; and conventional
programming languages. We need not even limit the conception of ‘language’ to the
written mode, as is usuval in computing. The action-based languages of calculators

and certain graphics systems (Reisner, 1981) can be considered in the same way.

The argument is as follows, Novices learning an artificial language look for
guiding principles. They do this because it is more efficient to discover a
systematic structure in the language than to learn an entirely arbitrary collection of
rules, Various guiding principles have been proposed; the one we shall consider is
the principle that the rules of the grammar must have a family resemblance, so that

missing rules can be reconstructed by extrapolation from other rules, That means

42~

Steve Payne

that the rules of the grammar are highly organised, which in turn means that they
can be derived from higher-order rules, in just the same way that sentences can be

derived from ordinary rules of grammar. Thus a new psychological principle is being

proposed:

Not only do we learn a language by systematising it into rules,
but we also systematise those rules into higher-order rules.

It will be argued that this model of learning artificial languages fits well with
the intuitions of experienced programmers, who use such words as ‘harmonious’ to
describe a syntax, and that it also can be regarded as a special case of familiar

principles in the psychology of memory and learning.

2, '"Guiding principles’ in command language design

Research on the learnability of command languages has uncovered a number of
‘guiding principles’ Barnard et al. (1231) have shown that novices learning a
command system remembered the order of arguments best when there was a
consistent order across all command words (guiding principle 1)} when there was na
consistent order, the next best performance was achieved when the order relied on

the pattern of English, in which the direct object usually precedes the indirect object
(guiding principle 2).

Ledgard et al.(1%20) modified a commercial text editor to make its commands

interpretable as short English sentences (guiding principle 2 againh Instead of
RS:/TOOTH/,/TRUTH/ the subjects wrote R "TOOTH" W "TRUTH"; meaning Replace
s With ey and performance improved dramatically, Although the "short English
sentence" interpretation has some face validity and some support from a study by
Wright and Reid (1973}, using a rather different paradigm, it has also been argued
that the effect was due to making it clearer which symbols were literals and which
were delimiters. Potential confusions of that sort, described as character
ambiguity by Thimbleby (1981), chould be avoided, to simplify comprehension

(guiding principle 2)

A different approach has been offered by the work of Mayer (zsee Mayer, 1979,
for an overview) who has shown the efficacy of using concrete images to help

learners understand Basic and thus learn it faster (guiding principle 4), Du Boulay

Lowvvemce

-43- hievon cﬁvy (Vg

Steve Payne

et al, (1721) extend this argument,

Last in this anthology, Carroll (1930) showed that the internal structure of the
rule system exerted a powerful effect, and that rules should be hierarchical and
‘congruent’ - which is to say that the language should contain familiar bundles!
ADVANCE/RETREAT would be a congruent pair for controlling a robot, but
GO/BACK (with the same meaning as advance/retreat) would be non-congruent

(guiding principle 5).

While more examples could no doubt be found the pattern is clear. Learners
need organisation. They can obtain it from from familiar concrete prototypes, or
from familiar rule systems such as English, or from a perceptible organisational

principle within the rule-system, We shall explore the last possibility further.

3y Organisation and grammar learning

An effective demonstration of the role of organisation in learning an artificial
language was given by Green (1979), who compared dialects of a nonsense language,
‘Tabberish’y in which the proportions of ‘marker elements’ were varied. All dialects
had the same fundamental structure, with a simple phrase structure, but in some
dialects each word was preceded by a marker word peculiar to that class, as though
in English all animate nouns were signalled by a preceding word ‘animal’. In other
dialects of Jabberish, phrases were given their own unique markers, as though in
English all noun phrases were signalled by the word ‘the’s Finally there were
conditions with no markers and with all possible markers, By varying which words
and which phrases were marked, a number of delicate predictions could be derived
and tested, given the basic assumption that the markers were an effective aid to
perceiving the structure of the grammar. The experiment showed that dialects were
in general better learnt when markers were present, and more particularly those
aspects of each dialect that were signalled by markers were hetter learnt. Further
evidence comes from Reisner (1781), who used an interactive graphics system as a
testbed, putting a plausible case for regarding actions at a terminal as being subject
to rules of grammar in the same sense as programming languages. One system,
called ROBART 1, required fewer control actions of the user at the price of a mare
complex grammar than the competing system, ROBART Z, In several places Reisner

identifies ‘structural inconsistencies’ in ROBART 1, places where different

el

Ct\a..‘(

)

=ll=
Steve Payne

sequences of actions are required depending on what is being drawn when 1t would
be reasonable to presume that identical sequences would be used. Thus in ROBART
1 at least two rules have to be learnt to handle these cases, whereas in ROBART Z a
single general rule suffices. In ROBART 1 users tended to apply the wrong rule,
and Reisner compares the problem with the child who has learnt that "verb + —ed
makes past tense" and then insists on saying "yesterday I goed". In general users

made more mistakes at the points identified by Reisner,

Since ROBART 1 demanded fewer control actions, it seemed to Reisner that
rather than minimising the number of terminal symbols in a language - i.e. the
lexicon size - one should instead minimise the number of grammatical rules. More
exactly, she writes "the number of (forms of) rules", because the key point is to

achieve consistency between rules,

The notion of consistency between rules has many attractive features. It ties
in with the concepts which computing people use when discussing languages! Basic
has a family resemblance with Fortran (though virtually none of the statements are
exactly equivalent); the syntax of Pascal is ‘harmonious’s that of Fortran is not} and
so on. Particularly important is their concept of ‘orthogonality’ in syntax. If one
kind of object, say an identifier of type real, is for most purposes similar to another
kind of object, such as an identifier of type boolean, then it should be possible and
meaningful to use either of them in all logically acceptable contexts. MNot so in
Pascal, where for example one can read in data values for reals but not for

booleans. The syntax is in this respect non—orthogonal.

How would one characterise orthogonality and harmony in syntax? Consider

the following diagrami

| +++ | O | o |
I | | !
| I | !
| OO | 33 | + |
| | | I
| | ! !
| # it | OCO |

ol o Rebok v helea.
Steve Payne

What goes in the cell with a question mark? If it turns out that anything except two
plus signs goes there we would feel affronted. On the same basis we feel that the
pattern has been broken when we discover that Pascal can read reals but not

booleans.

A similar type of organisation within rule systems can be seen in family
resemblances, Many rules of grammar in programming languages have the same
structure but combine different elements; for instance the notion of sequence turns
up repeatedly in the Algol/Pascal family. A program is a sequence of statements
separated by semicolons, a declaration is a sequence of identifiers separated by
commas, an array declaration requires a sequence of range expressions separated by
commas, and an expression is a sequence of operators separated by operands. The
notion of sequence is nowhere mentioned in the official grammar, but clearly it is

part of the perceived grammar,

4, Higher—order rules can be formalised

A convenient formalism has been invented to describe these family
resemblances, the van Wijngaarden two-level grammar {(van Wijngaarden, 1%74&) The
language is rather horrifying, as we have to distinguish between proto-notions and
meta-notions and between production rules, hyper-rules and meta-rules, but the
idea is simple enoughs Suppose we have three ordinary production rules,

declaration sequence: declaration / declaration sequence + declaration

statement sequence! statement / statement sequence + statement
letter sequence! letter / letter sequence + letter

Because of their family resemblance all those rules can be replaced by a single

hyper-rules!

SEQ-ITEM sequence: SEQ-ITEM / SEQ-ITEM sequence + SEQ-ITEM

The term SEQ-ITEM is a meta-notion defined by a meta-rule!

SEQ-ITEM ! declaration / statement 7/ letter

To derive our original three production rules from the hyper-rule, we take the
hyper-rule and eliminate the meta-notion SEQ-ITEM from it in all possible ways.
First, we find that the meta-rule defining SEG-ITEM allows it to be replaced by the

proto-notion ‘declaration’; substituting that for SEQ-ITEM gives us the ordinary

Steve Payne

L\XMd.wf(

production rule!

declaration sequence} declaration / declaration sequence + declaration

By substituting the proto-notions ‘letter’ and ‘statement’ we can recaver the
original rules, To make this system work, it is W that inside hyper-rules all
occurrences of one meta-notion (e.g. SEQG-ITEM) are replaced in the same way;
whereas the ordinary production rules created from the hyper-rules work in the
ordinary way, like Backus-Naur form. (The formalism is well described by Pagan,
1921, To simplify exposition I have not used the convention that ‘x’ is written as

‘letter x symbol’; etcd)

While much of the theoretical interest of two-level grammars lies in their
ability to express semantics as well as syntax, their interest in the present context
lies in their closer resemblance to the grammar-in-the-head. It is unlikely that the

-grammar-in-the-head corresponds exactly with the two-level grammar, and for that
reason the loose term ’‘higher-order rule’ seems preferable to the tightly defined
term ‘hyper—rule’. We can still feel confident that higher-order rules can be defined
more tightly if required. It is also useful to observe that only two levels are

required; there is no need for the system to become indefinitely recursive,

5, Organisation and dis—organisation! some examples

Existing command languages for text-editors and word-processors exhibit a
variety of organising principles, especially for the contral of cursor movements, A
good one is WordStar’s control diamond:

E

A S D F
X

Control-E sends the cursor up, control-X sends it down} control-S is left by a
character, control-A is left by a word} control-D and control-F go right. This
happily marries a strong organising principle with the use of perceptual coding,
rather than symbolic coding, Notice how "move a long way left" is coded onto a key

which is placed a long way left] very ingenious.

Less successful are the symbolic mnemonics used in many other

word-processors, such as SpellBinder, Mince (child of EMACS), and Magic Wand.

e fugw.'wlne?oa ko 06l

47~

Steve Payne

Partly that is because one so quickly exhausts the obvious mnemonics: after using F
for Forward and B for Backward, what next? Mince uses N for next and P for
Previous, V for View-next-page, etc. (In - one presumes - despair, the creators of
WordStar used J for Help, adding "That was a Joke, There is no J in Help." It

works!)

What we are looking for, however, is relations between rules, not the
difficulties of symbolic mnemonics limited to one letter. Mince is interesting
because it combines two different organising principles, which seems to make it
rather hard to learn. One organising principle is to use the control key for ‘small’
(e.g. character) and the escape key for ‘large’ (e.g. word)! control-F goes forward 1
character, escape-F goes forward 1 word. But the other organising principle is to
use control and escape for forwards and backwards! control-V views next page,
escape-V views previous page. This command conflicts with the previous one in two
ways, since ‘forwards’ and ‘backwards’ are coded differently and ‘control’ and

‘escape’ have different meanings.

Most perverse of all, unless the author has simply failed to grasp the
principle, is the TXED system, where the only clear thing is that the designers
could have used some help, either in choosing a principle or else in explaining the

principle they did choose!

Char Word Line Page Buffer
Fwd D W N P Z
Back v U G @ B

These choices have no apparent system of any sort. An interesting two-level rule
has also been included! when in command mode the symbol U moves you FORWARD a

word!

A number of examples could also be given from the design of conventional
programming languages. For instance, in Algol &40, the standard conditional forms
were if A then S1 and if A then 52 else 53, The 51 place-holder could be replaced by
most kinds of statement, including for-statements, and so could the 52, Does it
follow that §7 can also be? Certainly notj it can be replaced by almost any
statement, but if a for-statement is used, it must be enclosed by begin and end.
While there are valid technical reasons for this restriction (it defends the grammar
against ambiguous dangling else-clauses) it is one which prevents the application of

the extremely simple and to-be-expected rule that §1, S8Z and S3 are exactly

-48-
Steve Payne

equivalent slots.

4, Higher—order rules as a special case

There is a strong psychological literature on the learning and recall of word
lists and paired associate lists, These paradigms have been used for many
purposes, among which we find that the influence of intra-list structure has been
extensively studied. OFf course, there are many other aspects of organisation in
memory and many other paradigms for its investigation (Puff, 197%, passim) but the
paired-associate list seems remarkably similar to the list of commands paired with

their effects in a command language,

The ubiquity and pervasiveness of organisational principles can be seen in
Tulving and Donaldson’s important book (1972), The standard result is that a list of
items which can be grouped into categories (flowers, animals, etc) is better recalled
than one which is not categorisable, This effect depends on the number of
categories and the number of instances (Weist, 1970), Mot surprisingly, it is also
clear that subjects impose their own coding schemes when necessary, and these can
also improve recall (Tulving, 1%42). One particularly interesting result is the
"some-or-none" phenomenon! either several items from a given category are recalled
or else none at all (Cohen, 19464), That clearly bears on our interest in recreating

forgotten or unknown commands from the ones that can be recalled.

In an entirely different experimental paradigm, it has also been shown that
transfer from one miniature artificial language to another is easier when the
languages bear a family resemblance, even when the subjects were ‘unaware’ of the
resemblance at the verbal level (Reber, 1947), In another valuable finding Reber et
al.(1720) showed that the structure of a simple rule-system could be disguised by
one type of display and revealed by another, to the extent that subjects could
categorise candidate sentences as grammatical or not, although possibly not having
a verbal formulation of the rule. Maoreover, telling subjects to look for a rule did
not necessarily help, as the conscious search tended to lead them astrayj the best
results came when the existence of a rule was revealed after presentation of

examples; rather than before.

Although the effects of organisation on memory have been actively studied for

some time, their theoretical interpretation is still a matter for discussion (Voss,

n\,\q’ / P Lxpv e g ovSme("«
_——— r ol Jn‘s-u/vfa”; 9ot
.« wowe(~{'&\'~([,/u,
" oA,

Steve Payne

1979), Nevertheless, for immediate practical purposes it is safe to assert that
organisational effects in the perception and learning of rule systems are not a novel
psychological phenomenon, but a new manifestation of familiar principles common to

all aspects of memory research.

7. Towards empirical tests

There are no studies known to the author treating the issue directly. An
experimental programme is being initiated. The effects of organisation on command
languages will be studied by comparing rule systems with a coherent principle, with
conflicting principles (as in the Mince example above);, and with no organising
principle} in the first study, the speed of learning the command sets will be
compared, and in subsequent studies their usability in practical contexts will be

studied.

A second set of studies will take up similar issues in the design of
programming languages. Because of their much higher degree of statement
complexity, these will provide an excellent counterfoil to command language
studies, It is hoped to demonstrate that when a language reducible to a small
number of higher-order rules is easier to learn than a less reducible language, even

if the vocabulary or the average sentence-length is greater. Finally, in view of the

result obtained by Reber et al. (1%20) - not to mention anecdotal comments by
people who failed to notice organisational principles in WordStar and elsewhere - it
will be necessary to look for effective ways to display higher-order rules. Should
we teach generalisations about rules before teaching rules, or afterwards? Or

should we not teach them at all, and let the subjects infer them?

&, Conclusion

It would be hard to deny that language systems will be more easily learnt
when their structure is easy to perceive and regenerate} but words like ‘structure’
and ‘organisation’ have proved slippery and elusive in the past, By relating them to {]
the well-defined van Wijngaarden two-level grammar it seems that we can fare

better.

At present it seems that a good way to make a language system easy to learn

-50-

*Steve Payne

is to design the grammar so that it can easily be reduced to a small number of
higher-order rules. We hope to report empirical tests on this matter in the near
future, dealing with both command languages and programming languages. There are
however a few other matters that need to be considered. In particular, some
thought must be given to the problem of making the structure visible to the learner.
Moreover, it must not be forgotten that several other ‘guiding principles’ were
mentioned above, and these too should be brought into service if we wish to design

a very easy-to-learn language.

References

Barnard, P. J., Hammond, N, V., Morton, J. and Long, J: (1921) Consistency and

compatibility in command ianguages. International Journal of Man-Machine

Studies, 15, 87-134,

du Boulay, B., O’Shea, T. and Monk, J. (1981) The black box inside the glass boxi
presenting computing concepts to novices. International Journal of

Man-Machine Studies, 14, Z37-230.

Carroll, J. M. (1%20) Learning, using and designing command paradigms. Report no.

FC 8141, IBM Watson Research Center, N.Y.

Cohen, B. H., (19&4) Some or none characteristics of coding. Journal of Verbal

Learning and Verbal Behavior, S, 152-187.

Green, T. R, G, (1979) The necessity of syntax markers: two experiments with
artificial languages., Journal of Verbal Learning and Verbal Behavior,18,

451-496,

Ledgard, H., Whiteseide, J. A., Singer, A. and Seymour, W, (1980) The natural

3y SSE—5A2,

language of interactive systems, Communications of the ACM, 23, 556046

77

Mayer, R.E. (1979) A psychology of learning BASIC, Communications of the ACM, ZZ,

LRP-593,

Pagan, F. G. (1?21) Formal Specification of Programming Languages: & FPanamoric

Primer. N.J.! Prentice-Hall,

-51-

Steve Payne

Puff, C. R, (ed) (1979 Memaoary Organization and Structure. New York! Academic

Fress,

Reber, A, S, (1947) Implicit learning of artificial grammars., Journal of Verbal

Learning and Verbal Behavior, &, 355-843,

Reber, A. S. Kassin, 5. M., Lewis, 5. and Cantor, G. {1720) On the relationship
between implicit and explicit modes in the learning of a complex rule

structure. Journal of Experimental Psychology: Human Learning and Memory,

&y 492-502,

Reisner, P. (1981) Formal grammar and human factors design of an interactive

graphics system, IEEE Transactions on Software Engineering,; SE-5, Z29-240,

Tulving, E. (1942) Subjective organization in free recall of "unrelated" words.

Psychological Review, A%, 344-354,

Tulving, E. and Donaldson, W. (eds) (1%72) Qrganization of Memory. New Yorki

Arademic Precss,

van Wijngaarden, A, (1944) Recursive definition of syntax and semantics. In T. B,
Steel (ed.), Formal Description Languages for Computer Programming.

Amsterdam! North-Holland.

Voss, J. F. (197%) Organization, structure, and memory! three perspectives. In Puff

(1977

Weist, Ry M. (1970) Optimal versue non—-optimal conditions for retrieval. Journal of

Verbal Learning and Verbal Behavior, ¥, 311-216,

Wright, P. and Reid, F, (1973) Written information! some alternatives to prose for
expressing the oucome of complex contingencies. Journal of Applied

Psychology, 57, 160-164,

-52-

-53-

Developing an Instrument for the Analysis of Cognitive

Activities of Workers at Dialogue Systems

Erhard Nullmeier and Karl-Heinz Roediger

Technical University of Berlin

Abstract: The following article reports about some research work
done at the Technical University of Berlin in order to obtain de-
sign criteria for man-machine dialogues. The starting point of
the investigation is the examination of the working process. With
the results of industrial and cognitive psychology we intend to
create an effective instrument for measuring the cognitive acti-

vities of those users at display terminals.

1 Introduction

Many working activities are supported by EDP through introducing
computers in the field of administration; as a result however
working people become dependent on EDP through changes of produc-
tion scheduling. This leads to psychological stress through tay-
lorized activities and resultant decrease in the perceived value
of the work, through the pace dictates of the machine, through
regulation of working activities by the machine, through loss of
communication among the workers etc. These problems very often
are understood as temporary. We believe an analysis of these psy-
chological changes is needed, and such an analysis has not as yet

been conducted.

Since June of this year an interdisciplinary research project is
supported at the Technical University of Berlin, which shall attend
to the investigation of these questions. The aim of this research
project is to develop fundamentals for the design of dialogue inter-
faces in computer assisted systems under criteria of industrial and
cognitive psychology. Computer scientists and psychologists work
together in this project, for that a term of four years is planned.

As well as two newly created full-time positions are held by com-

54~

puter scientists, who also work in the borderlands of psychology
for some years, five computer scientists and five psychologists

contribute to this project with portions of their working time.

As the project is in statu nascendi at the time this paper must
be written, we cannot present results. On the contrary we want

to report about our aims and our methods as well as about first
problems as they have cristallized out of the preliminary studies

for this project, which took almost a year.

In the following we first of all intend to characterize the prob-
lem as accurately as possible and thereby emphasize on those dia-
logue places of work, tasks, and cognitive activities, which shall
be the subject of our investigations, and which in our opinion are
amenable to software design. In the subsequent chapter we go into
the particulars of the state of the art. With the walking along
critique of the existent positions, we want to point at their li-
mitations and their weakneSs, which we hope to avoid. After that
we outline our methodical positions; also here we can offer more
problems than answers. Finally, as a prospect, we will refer to
the possible and desirable results of this project for computer
science, for psychology, and - last not least - for the users of

computer assisted systems.

We are aware, that this project cannot solve the problems of com-
puter assisted places of work; for that the power of social pres-
sure groups is needed as well as competence. Nevertheless we be-
lieve, that there is a latitude for designing technology, which
should be used to achieve improvements in a limited domain. We
hope to carry out not only a contribution to the enhancement of
acceptance, but at the same time we make up our minds to point

out the limits of computer application.

2 Starting Point

In this interdisciplinary research project we intend to investi-
gate dialogue places of work in the field of administration of
public services as well as free economy. We understand a dialogue

work place to be not only a place for storage and retrieval of da-

-55-

ta but also for other cognitive activities belonging to the work-
ing process as for example, the decision about the allocation of a
credit in a bank or the adjustment of damages in an insurance. In
this early stage of our project we leave undecided whether the work-
ing process which we will investigate runs fully or only partially
automated. As we proceed from the hypothesis, that one part of the
dissatisfaction of workers at dialogue places of work results out
of the shift of decision competence from man to machine, we want
to become acquainted with both types of work places. Among other
things we hope to obtain out of this, significant statements about
designing technology regarding cognitive requirements, which the

working process should assign to the worker.

Following another thesis, that in the main cognitive activities
are designable through software, we confine ourselves to exactly
those aspects of the work at dialogue places of work as the main
part of our investigations. Further components of the working ac-
tivity, such as affective or sensumotorical ones will be consid-
ered at least in the explorative interviews of the initial period
of this project in order to obtain statements about exactly that
part of the working activity one can design by software. The es-
sential of that is to determine how and to where interpersonal
communication at work places has been switched over. But it is
not our aim to reconstruct lost communication between colleagues

by displays and software design.

On the contrary our aim is to analyze cognitive activities such as
the collecting, processing, and evaluation of information, as well
as computations and decisions in order to obtain criteria, which
parts of these activities can be delegated to the computer without
interfering into autonomy and competence of the worker to such an
extent, that he becomes a part of the omnipotent machine respective-
ly feels himself like that.

3 State of the Art

Two recently published papers, the article of MORAN on "An Applied
Psychology of the User" (/6/) and the monograph of SHNEIDERMAN on

-56-

"Software Psychology" :(/9/) can be regarded as typical investiga-
tions of human behavior when working with dialogue systems.

The authors report on psychological investigations about isolated
aspects of working at display terminals. They often try to optimize
the man-machine system, whereby they look upon humans as black boxes
for reasons of simplicity. They examine their input and output dis-
regarding the nature of information processing in the human brain.
In attempting to explain human reasoning intricate cognitive pro-

cesses are simulated in a simple laboratory environment.

MORAN wants "more than just explaining user behavior ... to predict
and to control it" (/6/, p. 3). He focusses his attention exclusive-
ly on the pure cognitive aspects of the individual user. According

to his aims he prefers calculational models of user behavior.

Floyd, Keil, and Nullmeier state that from this point of view
"users (= people) are reduced to (machine-like) error-prone cCOmpo-
nents of the human-computer system" (/4/, p. 491). MORANs approach
"implies that only those dimensions of user behavior which are mea=-
surable can be considered. Predicting and controlling user behavior
on the basis of the models thus obtained will contribute to increas-
ing the performance of the system at the level of individual trans-
actions, but actual user needs will not be taken into account. Even
if system performance is the overriding goal, this approach will
produce misleading results, since the overall system performance
will only be satisfactory if the system does not force the user ei-
ther to decompose his work into awkward steps or to work against or

around the system in order to maintain a reasonable work style"
(/4/, p. 491).

These critical comments can be supported through the dissatisfaction
of psychologists like NORMAN (/8/) with research on cognitive psy-
chology. He finds fault with the narrow limits of investigating
only pure cognitive systems, and noticed that "the results (of this
approach, the authors) have been considerable progress on some
front, but sterility overall, for the organism we are analyzing is
conceived as pure intellect, communicating with one another in lo-
gical dialogue, perceiving, remembering, thinking where appropriate,

reasoning its way through the well-formed problems that are encoun-

Y -

tered in the day. Alas, that description does not fit actual
behavior." (/8/,p. 4).

NEISSER (/7/) emphasizes that the human intelligence which can be
observed daily when humans work or simply live, was hardly ever
investigated by psychologists. He states that "anyone who wishes

to study such problems must start from scratch ... It is an example
of a principle that is nearly as valid in 1978 as it was in 1878:
If X is an interesting or socially significant aspect of memory,
‘then psychologists have hardly ever studied X." (/7/, p. 4).

Summarizing we mean that the previous results of cognitive psychol-
ogy are of less value to our project; we hope that a pressure from
applicants and clients of psychological research will lead to more

investigations on practical aspects of cognition.

Despite these critical comments we intend to "study applied psychol-
ogy in order to find out how to make computer-based systems more
adequate as tools for their human users. Taking this approach, one
would focus on such questions as 'How should computer-based systems
be embedded into the working context of their users ?' 'What kind

of computer system models are appropriate for the users ?' 'How can
we contribute to making systems more transparent to users ?' 'What
does transparency mean, psychologically ?' 'How can individual trans-
actions and streams of transactions be best arranged to correspond
to meaningful work steps ?' ...

Taking this approach, we also will start by considering individual
transactions, but we will pose different questions and interpret

the answers in a different context." (/4/, p. 491f.).

DZIDA (/2/) reports on some research to support the human working
process at dialogue systems by appropriate tools. He compares com-
plex software tools, which are difficult to understand for the user,
with simple software tools, which can be combined to more complex
tools by the user in a modular way. DZIDA states, that in conside-
ration of the principles of the regulation of human actions the

latter kind of tools are more adequate for humans.

Now we want to mention some psychological work that can be a start-
ing point for our project. The human working process can be seen as
goal-oriented, rationally, consciously, and mutually dependent on

other humans. The human decides what his aims shall be (at least

-58-

what shall be partial aims through which he can reach the given
goal) and which of the available tools he wants to use. The per-
formance of the task can be seen essentially as rationally. This
latter assumption means simplifying the human worker, but this
objection can be weakened because the planned analysis of the
working process will take into account the given task as well as
the real individual working process. Therefore the analysis in-
cludes non-rational elements of human behavior, too; e.g. the in-
dividual preference for certain sequences of transactions, and the
way of using external storage space for data, which will be further

processed by the individual or his collegues.

Mutually dependent on other humans, means that the individual pro-
duces and finally consumes, and that his working and living condi-
tions are influenced by other humans. These assumptions, which are
essentially different to those of classical industrial psychology,
are explained in detail by VOLPERT (/10/). On the basis of these
jdeas and some formalism which were taken from computer science,
mainly HACKER (/5/) developed a theory that explained the perfor-
mance of actions focussing on the psychological regulation of the
sequencing of actions. The main application area of this theory are
industrial working processes, e.g. the control and supervision of

partly automated manufacturing processes.

Clearly, there remain some doubts as to what extent this theory can
help us solve our problems. What we mean is that the basic assump-
tions of the nature of the human working process are a suitable
starting point to raise other gquestions. These assumptions are ap-
propriate when they concern the aspects of working with dialogue
systems, which can be influenced by software design. Additionally,
the aspects of planning cognitive activities and of task-oriented

communication must be integrated into the theory.

Since we are planning to analyze the working process at dialogue
systems, the earlier developed instruments on the basis of this
theory can give valuable hints. As mentioned by FISCHBACH and NULL-
MEIER (/3/) the instruments of BaarB et.al., Mickler et.al., and

the VILA are of main interest.

In the following section we want to explain our research schedule,

that is based on the mentioned theory and especially on critics of

this theory.

-59-

4 Our Positions

We are planning to develop an instrument for the analysis of
cognitive activities. This instrument shall be constructive in
the sense of getting design criteria out of the results of the
analysis, and we are hopeful of being able to rate design alter-
natives. We hope to combine various developments in the field of
industrial psychology, particularly those of cognitive regulation
of working activities, with models and results of cognitive psy-
chology.

First of all we must select appropriate dialogue systems and en-
sure that we can investigate the users of these systems. In the
selected administration area we plan to perform explorative inter-
views with the users. These interviews should help to prepare the
planned detailed analysis of cognitive activities. We emphasize
questions concerning the changes of the structure of tasks and cog-
nitive activities that are influenced by EDP, especially by dia-

logue systems.

We intend

- to find out, what common and what distinct aspects characterize
the working activities. Thus we want to define the group of dia-
logue systems and persons, which should be investigated further;
simultaneously we want to estimate, to which similar places of
work the results of our analysis can be transferred.

- to find out, what are the real users needs and interests; thus
we gain some hints, at least what we must include into our ana-
lysis. The interviews should also answer the question, what ques-
tions can be answered by the users.

- to get comparable statements concerning the quality of dialogue
systems as seen by the users, and demands for a better design of

interfaces.

The assessment of different realisations of dialogue systems and

therefore of working activities should take into consideration to
what extent these activities promote the individual personality.

Essential here is that the individual comprehends and appreciates
the entire working process, and not merely a compartmentalized

portion of it. An other criterion is the influence of the worker

-60-

on his working process, particularly in the independent definition

of partial aims and the selection of his own tools.

An analysis of the demanded activities to perform a given task, es-
pecially of the mentioned aspects and the relations between them,
may help to detect incomplete (or partialized according to VOLPERT
(/10/)) activities. A demanded activity is called incomplete, if
only a small part of the levels of regualtion is necessary to per-
form the activity. As a particularly pronounced example, data input
tasks do not make demands of thé abilities of humans to organize
mentally their own working process. Taking the aspect of communica-
tion into account, an activity may also be incomplete, if the commu-
nication between humans is restricted to the credit of the man-ma-=

chine dialogue.

Instruments for the analysis of working activities typically show
the weak points of the activities; since an activity which promote
the individual personality in an ideal way cannot be defined con-
clusively we must start from these weak points (negative demands).
DORNER (/1/) investigated the problems of humans to handle complex
decision situations. He states as a result of this project, that
merely the faults that humans made from his viewpoint as the super-

visor of the experiment can be observed.

In our project we are planning to investigate to what extent the de-
grees of freedom to perform the task are restricted or enlarged. Ex-
amples for restrictions are humans who are forced to store all their
knowledge of the working process into the computer, who are forced
by the system to decompose their work into awkward steps, and who

are restricted to communicate with other humans.

The degrees of freedom for the human to define his own aims and to

plan his working activities on his own responsibility can be analyzed

through such parameters as the number of alternatives to reach given
goals, the defintion of subgoals and subtasks, the sequence of per-
forming subtasks, the possibility to get a feedback concerning his
activities, ...

When working with dialogue systems cognitive activity can be charac-

terized by the way in which and the frequency with which software

tools are used. In particular we should find out how far the user

s

can see through these software tools in that he creates more complex
tools out of simple elements corresponding to his progress in learn-

ing and to his cognitive style.

On account of the use of dialogue systems the cognitive process of
the users of these systems can be examined using dialogue protocols
and data files which are changed by the user. The possibility of de-
fining his own aims and the cognitive process are mutually depen-
dent; we intend to investigate what consequences have certain re-
strictions concerning the definition of goals, e.g. according to
internal standards to structure a formular, to the variety of cogni-

tive activities.

This method of analyzing "documented cognitive procésses“ must be
completed by an interrogation of the worker. By this combination of
objective and subjective elements in the analysis we hope to find
out the relevant cognitive activities that lead to the decision pro-
cess, the task-oriented communication that take place or not, and

the reasons of using certain software tools.

5 Aims

We are aware, that this project begun by us moves along the small
edge between enhancement of acceptance and rejection of new tech-
nologies. It will be our function to test the edge especially in
order to find out which parts of the working activity are approach-
able to software design. We hope to become effective initwo .so¢ial
domains with the instrument for the analysis of cognitive activi-

ties, which we want to develop.

In the field of science we hope to expand the existing psychologi-
cal theories in such a way, that these new activities become com-
prehendable and measurable with those theories. For the computer
scientists we hope to create verifiable criteria, with which they
can begin the design of interfaces in the interest of those persons

affected by these places of work.

We hope to utilize our knowledge about the effects of application
of these technologies together with the affected persons in the
sense,that they can engage themselves in the designing process by

-6H2 -

formulating the requirements upon their work places. Already at

the beginning we have noticed, that we cannot put to an end all
problems of computer assisted work places with this. We also see
the risks, which are located in an instrument such as that one

we will develop for the analysis of cognitive activities: it can

be misused as a contribution to the continuing partition of cog-
nitive activities. At this point we are obliged to call attention
to the limits of scientific research and we are obliged to take

not longer part in the process of distortion of human working acti-
vities by taylorizing those activities and by intensification of

the work pace.

Before we come to the point, where we only have to show the limits
of computer application, we believe to find that play, where it
is possible to design technology in the interest of the persons

affected by this.

6 References

/1/ DORNER, _D.
ber die Schwierigkeiten menschlichen Umgangs mit Komplexitét

Psychologische Rundschau 32 (1981) No. 3, p. 163-179
/2/ DZIDA, W.

Unterstiitzung menschlichen Arbeitshandelns durch das Datensicht-

gerdt
in: Ergonomic(Ed.), Das Datensichtgerdt als Arbeitsmittel,

Berlin 1981

/3/ FISCHBACH, D. and E. NULLMEIER
Nutzen von Arbeitsanalyseverfahren in Abhdngigkeit von der
theoretischen Konzeption
to be published in: FRIELING, E. (Ed.), Konzeptionen und Mo-
delle der T&tigkeitsanalyse, Frankfurt am Main 1982

/4/ FLOYD, C., R. KEIL, and E. NULLMEIER
Letter to the editor-in-chief of ACM Computing Surveys
ACM Computing Surveys 13 (1981) No. 4, p. 491-492

/5/ HACKER, W.
Allgemeine Arbeits- und Ingenieurpsychologie
Berlin 1980

/6/ MORAN, T.P.
An Applied Psychology of the User
ACM Computing Surveys 13 (1981) No. 1, p.1-11

/7/

/8/

194

/10/

ol B

NEISSER, U.

Memory: What are the Important Questions ?

in: GRUNEBERG, M.M., P.E. MORRIS, and R.N. SYKES (Eds.) ,
Practical Aspects of Memory, London 1978, p. 3-24

NORMAN, D.A.
Twelve Issues for Cognitive Science
Cognitive Science 4 (1980), p. 1-32

SHNEIDERMAN, B.
Software Psychology
Cambridge, Mass. 1980

VOLPERT, W.
Die Lohnarbeitswissenschaft und die Psychologie der Arbeits-

tdatigkeit
in: GROSKURTH, P. and W. VOLPERT, Lohnarbeitspsychologie,
Frankfurt am Main 1975, p. 11-196

-6l

I.

-65-

THE PSYCHOLOGY OF THE COMPUTER USER

B. The programmer

-66-

1.

-67~
Individual differences and aspects of control flow notations
Gerrit C. van der Veer, Vrije Universiteit, Amsterdam
Jan van de Wolde, Technische Hogeschool Twente, Enschede

INTRODUCTION

N

There has been quite some discussion recently about the urgency of incorporating
computer literacy in our schoolcurricula An argument frequently adduced in support
of such a development is the notion that the experiences of computerprogramming
turns people into better problem solvers. Some authors claim that such a transfer
is very general in nature, and applies to widely divergent domains of knowledge.

A prominent advocate of this view is Seymour Papert (1980). His brainchild, the
LOGO-project, springs from the idea that 'doing' is a necessary condition for
knowledgeacquisition, and that problem solving performance will profit from the
procedural approach stressed in computerprogramming. We must note however that

the evidence for this hypothesis , provided by Papert, has not been very con-
vincing up to now. Whether learning LOGO-programming, and elaborating its condi-
tional branch statement, effects conditional reasoning ability in children has

been the subject of a study by Seidman (1982). His experiments, designed more
powerful than those of Papert, suggest that such effects, if present, are very
limited in nature and strength. Less ambiguous positive transfer effects of
computer programming have been reported by Soloway & Lockhead (1982). The results
of their experiments indicate that mathematical principles are handled more

easily when they are to be expressed in program text rather thanin plain algebraic
terms. The authors warn against danger that such an effect may be undone by the
"current push in the direction of more formality in programming; programming
languages are in danger of becoming like mathematics'.

The fact that notational formats play an important role in understanding mathematical-
concepts also became clear to us a couple of years ago, albeit in a rather odd way.
In a experiment by Van der Veer & Otterangers (1976) simple mathematical algorithms
had to be developped in terms of a so-called Pupils Programming language. It
appeared that those students who were apt to avoid math as a study subject, severely
handicapped themselves by using meaningless identifiers and by abbreviating basic
symbols, whereas math-minded subjects created maximum semantic transparency in the
code. By obscuring the code, the first group transformed the originally meaningfull
problems into a collection of incomprehensible tricks.

It isevident, however, that the importance of computerliteracy does not solely
depend on transferability of skills. Computing is useful for its own sake. It
offers extra opportunities to organise and communicate knowledge, and may therefore
augment human intelligence in problem solving and decision making. Moreover, we
have to acknowledge the growing social and economic needs for computer literate
citizenship in our modern society. Programming as a tool in education is growing
more and more popular. In Amsterdam at least 12 primary schools have a computerterminal
in one of the classrooms at which a language is available that is especially
constructed for children of about 11 years of age. In a growing number of secondary
schools informatics is part of the curriculum. At the moment this is only the case
on a voluntary base, but it is to be expected informatics will be incorporated in
the official curriculum within a few years. In a growing number of university-
faculties informatics or at least the use of computers is becoming a normal part
of the study.

. LEARNING A COMPUTER LANGUAGE

When somebody is introduced to computerprogramming for the first time, there are at
least four factors that affect the learning process:
a. learnercharacteristics

What are the learner's intuitions about computerprogramming?

How are relevant concepts organized in his mind?

What is his style of representation?

Here we distinguish between three sources of variation:

- abilities; i.e. mental capacities like general intelligence, which are supposed

to be relatively stable over time;
- educational background; e.g. previous training in mathematics or logic;

wBil

-cognitive style; the way a learner is apt to attack certain problem situationms.
The adequacy of a style will depend on the situation or the nature of the problem
involved. Style as an operational mode is a product of past learning experiences,
and may to a certain extent be influenced by directed training.

b. characteristics of the problem solution, i.e. the algorithm to be constructed.
What kind of conceptual organisation is required in order to solve the problem?
The problem (solution) may ask for some kind of hierarchical organisation, and
some kind of organisation may be suggested by the semantics that are present in
the wording of the problemdefinition.

c. features of the programming language
What kinds of conceptual organisation may be expressed in the code? What kinds of
organisation are promoted by the syntax? Being psychologists we do not pretend to
be exhaustive in our analysis of language features. We will deal one by one with
syntachical aspects like flow of control, datastructures or the vocabulary of basic
symbols and identifiers.

d. didacties
How do we attain a match between programming constructs and routines of information
processing present in the learner's mind? This question concerns the use of
modularisation techniques, top down or bottom up programming, structured diagrams
and the like.

From these factors two have gained most of our attention up till now, namely learner

characteristics and aspects of control flow notation.

LEARNER CHARACTERISTICS

Our concern with learner characteristics stems from research in our laboratory regarding
individual differences in cognitive styles.

intelligence

About including intelligence in our set of relevant learner characteristics we will

be very short. Intelligence is a very complex concept in which many aspects may be
distinguished (e.g. see Guilford & Hoepfrer, 1971). We all know that general intelligence,
whatever operationalisation is being used, is a strong predictor of very different kinds
of problem solv1ng performance. In our experiments we felt content measuring this factor
by means of Raven's Progressive Matrices, and next partialling it out from all effects

of interest.

educational background

One aspect of educational background at least in the Dutch schoolsystems, appears to

be of great relevance when a computerlanguage has to be learned. Students that leave
secondary school show con51derab1e differences in their apprehension of mathematics.
Some students, to be called 'alphas',are only exposed to very simple, introductory
courses, and often have dellberately avoided any cotinuation course since they don't
feel any affiliation with the subJect matter. Others, so-called 'bethas', have received
a substantial amount of practice in dealing with formal notations, in symbolic manip-
ulation, and in applying algorithms (not so much in constructing these). Both types

of students share the same circumstances in higher education, for instance in faculties
like linguistics or social sciences. Their curricula often imply statistics and several
kinds of computer use. When we want to examine the feasibility of programming constructs
for an introductory computerlanguage, the difference in entry characteristics between
alphas and betas will have to be kept in mind.

cognitive styles

Paks (1976) has developed some fruitful ideas in the field of learning and teaching
strategies. A guiding principle in his work is the idea that educational methods are
most efficient when tailored to the individual competence of the student. In view of
this notion Pask is particularly referring topartly automatic, intelligent teaching
systems. Basic to the strategies are the individual learning styles or dimensions of
'competence' as Pask calls them. These styles reflect modes of organising the acquisition,
storage and retrieval of knowledge. Pask designed several devices to measure aspects
of these styles, some of which has been translated and elaborated in our laboratory.
Most effort has been invested redesigning and standardizing the Smuggler's Test. The
plot of this test is a story about a gang producing and trading narcotics. The student

-69-

is asked to imagine that he embodied in some international police organisation with

the assignment of rolling up this gang. From the way the students organises and

reconstructs or reproduces the data, we infer three learning style factors (Van der

Veer & Van de Wolde, 1982).

factor I : inclination to learn and to put effort into memorizing. This factor does
not reflect an ability. While the instructions do not necessarily suggest
that the material should be memorized, some students do so spontaneously
and consistently.

factor II : operation learning. This factor concerns the inclination to deduce specific
rules and procedural details. It results in the availability of materials
that may serve in the construction of procedures, and it is expressed in
consistency of references to related details of the knowledge domain.

factor III: comprehension learning. This style reflects the inclination to induce
general rules and descriptions, and to record relations between different,
or even remote parts of the domain. It is expressed in the tendency to
reconstruct lost details by application of general rules and analogies.

CONTROL FLOW NOTATION

Our interest indifferent forms of Control Flow notation was excited by the work of

Sime, Green & Guest (1977) in Sheffield concerning conditional branching. In a series

of experiments these researchers have compared a number of alternative branching devices
as to their 'cognitive ergonomic' properties. It concerned two familiar conditionals
which were called JUMP and NEST-BE and a prototypic construct called NEST-INE designed
in Sheffield. JUMP is a GOTO-branching statement like the one we know from such
languages as FORTRAN and BASIC:

L1 IF ILL GOTO L
DO YOUR DAILY WORK
Ll STAY HOME AND RECOVER

NEST-BE (Begin-End) is a control structure like IF ..THEN..ELSE.. in ALGOL-60 supplied
with scope markers:

IF ILL THEN

BEGIN STAY HOME AND RECOVER
END

ELSE

BEGIN DO YOUR DAILY WORK
END

NEST-INE is a related control structure but it provides more redundant information
about the conditions that have to be met in order to have some action executed:

IF ILL STAY HOME AND RECOVER
IF NOT ILL DO YOUR DAILY WORK
END ILL

The feasibility of these structures was tested by comparing several aspects of programming
performance when using a special-purpose 'microlanguage' featuring nothing but the
construct in question. Summing up the results, the authors conclude that 'by and large
these experiments have favoured the NEST-INE dialect (Green, Sime & Fitter, 1981),.
Nevertheless there was some evidence in their data that raised doubts as to the limits

of queuing decissions when parsing NEST structures. Sime et al experimerntedup to a
maximum of 3 levels of embedding and noticed a considerable decline in programming
performance with increasing depth.

RESEARCH IN OUR LABORATORY

design and procedure
Our experiments primarily aimed at examining the interactions between learner

-70-

characteristics, language features and some relevant attributes of algorithmic structure.
Furthermore we wanted to verify the queuing restrictions supposedly applying to NEST-
structures. With regard to language features we decided not to compare all three control-
structures, used in Sheffield, but to juxtapose JUMP with the most favourable nesting-
alternative, i.e. NEST- INE. The syntax of both languages was defined as follows:

The NEST-syntax:

{program) :: = {action)/IF {condition) (program) IF NOT
{condition) {program) END (condition)

{action) :: = {simple action)/{simple action) AND (action)

{simple action):: = A1/A2/A3/..../A10

{condition):: = C1/C2/C3/..../C8

With the context-dependent restriction thest <condition> at a certain level always
points to the same identifier.

The JUMP-syntax:

(program) :: = (line)/(line) {program

(line) : : = (statement)/(label) {statement)

(statement):: = (action)/IF (condition) GOTO (label)
{action) :: = {simple action)/{simple action) AND (action)
{simple action):: = A1/A2/A3/..../A10

{condition) :: = C1/C2/C3/..../C8

(label) :: = P1/P2/P3/.... /P9

The basic symbols in both languages as well as the problem defining elements were
meaningful words in the native language of the subjects. In order to prevent typing
speed to bias any result we redefined the entries on the keyboard, so that all
language elements could be produced by pressing single keys. By pressing a FORM-key
the subject was able to rearrange the format of his text automatically, providing
indentation in NEST, and label tabulation in JUMP. Another key was used to submit the
text to a syntax check. In case the program was shown to be syntachically correct, it
could be run for a semantic check by pressing a TEST-key. 63 subjects, young adults
of different occuptions, all having completed secondary education, took part in the
experiment. The programming session was preceeded by a test-session that supplied data
for the composition of a profile of learnmercharacteristics consisting of:
- the score on set II of Raven's Advanced Progressive matrices as an index of the

general level of intelligence;
- the scores on the three learning style dimensions;
- information concerning the educational background. Here we classified our subjects

in three categories:

betas : 21 subjects who (according to themselves) were rather good in math, and

enjoyed it as well.

alphas: 22 subjects who weren't any good at math and didn't like it either.

?: 20 subjects who reported to de well in math but did not enjoy it and those

’ who weren't any good at it, but enjoyed it all the same. ARG
On the basis of previous findings it was predicted that on the average the betas would
make the best programmers, and the alfas would make the poorest ones. The two groups
in the ? category, were supposed to perform
somewhere in between. By making comparisons between test scores profiles we were able
to assign two almost identical groups to both languages-conditions. It should be noted
that our sample was rather heterogeneous.

the learning. phase

At the programming session our subjects were introduced the apparatus, the procedure,
and the secrets of programming by means of self-instruction. Sitting behind a terminal
they followed instructions from a manual at a self paced rate. Each significant action
was followed by immediate feedback on the screen. In order to stress the strict
obedience expressed by the machine we used the metaphor of the computer as a modern,
multi-purpose slave. In the first part of the programming session, the learning phase,
our subjects could call for assistance from the experimenter whenever this was felt

.

necessary. This phase terminated after completion of two programs. These programs,

borrowed from Sime et al (1977) were called Cook I and Cook II. To give an example,

Cook II, more complex then Cook I, was specified by the following requirements:

“you have to program your slave in such a way that he will:

grill—everything that is not big and not leafy,

peel and fry—everything that is leafy and not hard,
chop and grill—everything that is not leafy but big,
chop and boil—everything that is both leafy and hard”.

results of the learning phase

In our heterogeneous sample it appeared that the scores on learning style factors 2 and
3 correlated very high (r =-68). For this reason we decided to combine these two
scores, and to call the composite result a versatility-score. Pask reserves this label
for an opportunistic learning style that includes both operation learning and
comprehension learning.Versatile students may choose at will between the two ways of
structuring learning material. They have a 'complete' repertoire of materials both

for constructing particular rules and for creating general descriptioms. Our criterium
for versatility in this case was a combined score on factors 2 and 3 that was above
median. Analyses of covariance on learning performance, eliminating the effect of
intelligence, showed that beta-subjects indeed needed less time than alphas.

(F 0=3.63, p < 0.05) respectively 75 against 104 min. The subjects we could not

lagéi alpha or beta needed 92 min. The analysis also showed that learning NEST takes
less time than learning JUMP, respectively 79 and 99 min. (Fl 0=5.28, p < 0.05).

The final result of the analysis indicated that versatiles neéged less time than non
versatiles, 75 and 105 min. respectively (F1 5 =4,21, p < 0.05). Looking at the three
competence factors seperately, it appeared tﬁag all had significant partial correlations
with the learning time.

factor 1 inclination to learn -.50
2 operation learning -.40
3 comprehension learning =-.36

In this first stage, we didn't find any interaction between language type, learningstyle
and educational background.

additional problems
After the learning phase the students were confronted with four additional problems

that had to be solved without any further help of the experimenter. Designing the

experiment we argued that a comparison between language constructs should be

accompanied by an analysis of the structural features of the algorithms to be coded

in terms of these. The following variables were considered:

a. The presence or absence of a hierarchy in the algorithm and the depth of embedding
in such a hierarchy. We speak of hierarchy when a number of tests has to be carried
out in some logical or preferred order. The 'depth of embedding' reflects the
number of levels in this hierarchy.

b. The presence or absence of a semantic framework that suggests some kind of
(hierarchical) structuring. Most algorithms are conceived in terms of meaningful
identifiers which imply a tacit reference to some semantic framework. This framework
may in itself suggest a certain order of tests. When it is absent (e.g. in the case
of meaningless identifiers) such order only follows from the formal properties of
the problem structure. T

\

Wy

Biologist I is the label for a task to program a taxonomy identifying animals (fish,
worms, mammals etc.) by the presence or absence of certain unique features (feathers,
fins etc.) The presence of one feature excludes the presence of all others and is

a sufficient condition to identify the animal. Therefore there is no preferred or
logical order of tests, and the depth of embedding is zero (that is, from the
algorithmic point of view). The other three problems are hierarchical in nature.
Tourist Information Consultant is a slave who advises tourists about means of
transport (taxi, bus etc.) on the basis of data about destination (far or near),
lugguge (yes or no), budget (high or low) and time available (in hurry or not).
Decision Maker is formally identical to the former algorithm, but lacks any semantic
frame of reference, the antecedentsbeing replaced by letters, and the consequents
being replaced by Action I, Action 2 etc. Biologist II shares the semantic domain of
Biologist I, but the decisions, more realistic, have to be made on the basis of
combinations of attributes which are not exclusive. Only a few of the 'possible’
combinations point to existing categories of animals. There are four levels of
embedding in this hierarchical taxonomy, as against three such levels in the
preceeding algorithms.

Results with the additional problems

In solving the additional problems 8 =~ subjects dropped out, failing to complete
their task within a reasonable amount of time. None of them was a 'beta', and only
one of them was a 'versatile'. Motivation was not the reason to fail here. Although
the experimenter suggested to leave at the end of the time agreed on (three hours)
five of these subjects continued the experiment for one or two hours without extra
payment. We omitted the results of these eight subjects from the rest of the
analysis. The differences between the solution times for the problem with four levels
(Biologist II) and the average results on the two problems with three levels (Tourist
Information Consultant and Decision Maker) shows a significant interaction with

type of language (F 41=4.98, p < 0.05). This indeed suggests that some critical
value is passed as Ehe number of levels increases from three to four. With more
levels NEST is inferior to JUMP.

min
O 4 levels (Biologist II)
50 |
40 e 3 |evels (average Tourist inf
cons. and Decision
30k maker)
_/.
20» L]
10
1 1

NEST JUMP

There is Yetanother case in which JUMP is superior to NEST. For the non-hierarchical
problem, Biologist I, NEST takes significantly more time (38 min.) than JUMP (16 min.)
(F 4]=5.59, p < 0.05). Only in this case NEST invokes more syntax errors than JUMP
(7£’against 37% in first runs). First, one is apt to skip the IF NOT clauses in
between the IF's since they seem superfluous in this case. Second, NEST, as opposed
to JUMP, does not tolerate any redundant testing Redunclant tests induce syntactical
omissions since they leave nothing to be specified in the IF NOT clause.

The meaningful problem Tourist Information Consultant takes less time than
the subsequent Decision Maker, that iS formally identical, also find a significant
interaction with versatility (F] 4I=4.54, p < 0.05)

b

min

30 o Decisionmaker

25 /3 e Tourist inf. cons.
20 T

15

1 1
vers. non-vers.

Althoug the abstract problem followed after the meaningful equivalent, non-versatiles
met with considerable difficulties. It seems that the availability of semantic

J’ but framed in abstract terms (F, ,,=9.94,p 0.05). Here we

.

connotations is indispensable to them in order to cope with a complex, hierarchical
structure. As the semantics are removed, their solution strategies are inferior to
those of versatiles. Finally we note some interesting results with learning style
factor I, inclination to learn. Controlling for effects of intelligence, the partial
correlations with the solution times for the Tourist Information Consultant and

the complex algorithm Biologis II are -.39 and -.52 respectively. In the case of

the abstract Decision Maker this correlation doesn't reach significance. Here it is
the versatility-style that is predictive for success.

FUTURE RESEARCH

At the moment we are preparing a series of experiments as a follow up for the one
reported here. In designing these, we will take the following considerations into

account:

embedding

It appears that NEST is inferior to JUMP when there are too many levels of embedding

or when the algorithm proper doesn't ask for a hierarchy at all. Both difficulties

can supposedly be dealt with by the introduction of another branching alternative
presented by Atkinson (1979) as NEST-PA (possitive alternatives). According to

Atkinson a programmer should be allowed to "think positively' by avoiding negative
formulations. With the help of this construction, which looks like the CASE-statement

in PASCAL, we can cope both with adjatent conditions (Biologist I) and with hierarchical
tests. We will compare this alternative with NEST«INE.

didactics

The present results suggest that we should not exceedingly dramatize the differences
between languages or language features. Whether or not somebody will be successfull in
performing a programming task only partly depend on the qualities of the syntax. Much
will depend on the combinations of problem characteristics,and individual cognitive
style factors or problem solving strategies. Furthermore, a language that looks

very hard to learn, nevertheless may easily map into the learner's experience. In

our future experiments we will study the use of structural diagrams as a didactical
aid for the understanding of flow of control principles.

"T"je-structures

Until now we have not paid any special attention to problems, in which some part-
structure is referred to from several places in the algorithm, while theremay be
no question of a hierarchy vhatsoever.

Going on holiday, take with you:

- a caravan : if driving licence and same continent;

- a hotelguide : if no driving licence or not same continent,
if winter and to inhabited area;

- a tent : if no driving licence or not same continent,
if summer or uninhabited area, and not dry;

- a sleeping bag : if no driving licence or not same continent,

if summer or uninhabited area, and dry.

Such problems that we tentatively call "tie"-problems ask for special modularisation
devices. We don't know yet what precise form they will take, but our first proto-
type will be parameterfree.

HmﬂH.IIMWIJ

é{ J9QUTAM
\ L Lap
3 3u1dealS 3

J X
AAINOTALOH ™ &

LNd L

¢ A
Feg SuTdosls \w

/
N

.t , JL97ULM

LNHL a |

N
6 L1
Ut \A né /. z
vg 3utdadsS pe3IIqeyut

¢ 2OU2OTT 3uTATIp

Mu @.quH.MQ.._HQU aumes

A

NVAVHVD

N

-75=

7. REFERENCES

Atkinson, L.V. Should if...then...else...follow the dodo? Software-Practise
and Experience, 9, 693-700 (1979).

Green, T.R.G., Sime, M.E. & Fitter, M.J. The art of notation. In: Computing skills
and the user interface. Edited by Coombs, M.J. & Alty, J.L. Academic Press,
London, 1981.

Guilford, J.P. & Hoepfner, R. . The analyses of intelligence. McGraw-Hill,

New York, 1971.

Papert, S. Mindstorms. The Harvester Press Ltd., Brighton, 1980.

Pask, G. Styles and strategies of learning. British Journal of Educational
Psychology, 1976, vol. 46, 128-148.

Seidman, R.H. The effects of learning the logo computer programming language
on conditional reasoning in school children. University Microfilms Internationaly
Ann Arbor, 1982.

Sime, M.E., Green, F.R.G. & Guest, D.J. Scope marking in computer conditionals
- a psychological evaluation. International Journal of Man-Machine Studies, 1977,9,
107-118.

Soloway, E., Lockhead, J. & Clement, J. Does computer programming enhance
problem-solving ability? Some positive evidence on algebra word problems.
In: Computer Literacy, edited by Seidel, R.J., Anderson, R.E. & Hunter,B .
Academic Press; New York, 1982.

Van der Veer, G.C. & Ottevangers, D.C. Problem solving by programming.
Proceedings of the Digital Equipment Users Society, 1976, vol. 3, no. 1, 345-351.

Van der Veer, G.C. & van de Wolde, J. De leerstijlen van Gordon Pask.
Een Nederlandse bewerking van de Smokkelaarstest. In: Strategieén in leren
en ontwikkeling, edited by Lodewijk; J.G.L.C. & Simons, P.R.J. Swets en

Zeitlinger, Lisse, 1982.

-76-

-77-

A model of the programmer's abilities to understand program
semantics and its impact on program(ming language) design

H.-E. Sengler
URW-Unternehmensberatung, Hamburg

1. Introduction

This paper suggests a model describing the understanding of a
computer program by an experienced programmer. Its purpose is:s

(1) to offer an explanation of the problems programmers experience
when managing large programs and

(2) to suggest improvements in the design and construction of
programs in order to reduce these problems.

The model does not discuss problems of learning a programming
language or learning a computing system but assumes that the
programmer is well acquainted with both.

The understanding of a program is seen as a process of acquiring
information, from the outside world as well as from information
already available. Two characteristics of human thinking are taken

into account:

(1) storage and retrieval of information is done by association

(2) the amount of information processable at any one time is
limited

2. Premises

The source of information for a programmer is the program's source
text, accompanied possibly by additional descriptions of special
aspects of the program, in general being one or more sections of
text or graphics. Each such section may contain formal and informal
passages. In the context of this model the formal passages are
those that determine the effect of the program (i.e. the behaviour
of a computer that executes the program) whereas the informal
passages do not contribute to that effect.

The model excludes the understanding of the informal passages of a
program because:

-78-
A Model of Understanding a Program

(1) The information gainable from the informal passages is in
general vague and its contribution to the wunderstanding of a
program therefore difficult to assess.

(2) The programmer can not rely on the informal passages because
they often do not exist at all or are ocut of date.

(3) The production of informal passages for programmers is an
2dditional ~ffort since they 4o not contribute to the programs
effect. It would reduce the overall costs of constructing a
program if a programmer could understand it solely from its
formal passages.

The aim of understanding a program, i.e. the information a
programmer wishes to obtain about it, depends on the purpose for
which it is analysed. The purpose the model assumes is to alter the
effect of a program in order to achieve some desired new effect.
The aim of understanding can be described as the "semantics of the
program”, defined as "the effect, the program will cause when being
executed by a computer and the correspondence between passages of
the effect and the passages of the program causing them".

The formal passages are written in a language whose syntax and
semantics are well-known to the programmer. The semantics of the
program is completely defined by its formal passages. The model
thus describes the derivation of a program from the formulation of
its formal passages.

3. The internal program

A human, reading a text in a language familiar to him does not
analyze it characterwise but reads words and makes assumptions
about the words to follow. A corresponding behaviour is assumed for
a programmer reading a program. It can be interpreted as mapping
the text into a new stucture formed within the human brain that
represents all aspects of the text the reader assumes to be
essential. The structure formed when reading a program will be
called an "internal program". All subsequent processes of
understanding described in the model are based on the internal

program.

The properties of an internal program are as follows: An internal
program is a net. Its nodes are called "components", its arcs are
called "relations". Basically the components of an internal program
are the semantic units of the programming language as they are used
in the program, the relations accordingly are the semantic
relations between them.

-79-

A Model of Understanding a Program

For example (all examples are from PASCAL) the character "+" will
be mapped into a component with the semantics "add the 1left and
right operands (when execution reaches this point)" with relations
to both operands and the previous and following operation. The
character "w" in the world "while" will not be mapped into a
component, nor would the world "while" alone because only for the
combination "while"..."do" the semantics is defined.

The actual mapping of a program text into an internal program
however is not determined by the language alone but is additionally
formed by the individual experiences a programmer makes while
learning the language and while using it. Attempting to reduce the
amount of information he has to cope with, the programmer may
interpret subnets of the internal program (as they would appear
according to the semantics of the language) as single components if
they often occur in the same combination.

A subnet mapping may be influenced by the kind of programs the
programmer works with but it may also be suggested by the language.
For example a variable, its type and the read- or write-accesses to
it are separate components according to the semantics of the
language yet a programmer may map them into a single component
"yvariable" with a property (type) and relations to operations
(accesses) .

As a result one cannot assume one unique mapping of the formal
passages of a program into an internal program but rather a variety
of similar mappings.

4. The process of understanding

When analyzing a program the programmer is assumed to look at the
program text and at each moment concentrate on one portion of it.
This portion is mapped into the corresponding portion of the
internal program (cum granu salis, as he may have to search for or
remember information not within the current view). This portion of
the internal program is information that is directly accessible for
further processing.

In the <choice of what parts of the program text to regard as
portions the programmer is guided by the appearance of the program.
Its formal passages are usually separated syntactically into
"regions". Examples of such regions are blocks ("begin"..."end") or
lines of text enclosed by blank lines. The programmer will choose a
region as a portion unless no such separation exists or a region
contains too much information to be processed. In that case he will
define his own separation.

-80-

A Model of Understanding a Program

A portion of the internal program may contain different kinds of
information: Components and relations whose semantics are known to
the programmer, outer relations (i.e. relations to components or
regions outside the currently analyzed portion) and inner portions
(i.e. portions inside the currently analyzed portion) whose
semantics may as yet be unknown. (Note: this implies that a
programmer separates a program into portions that are either within
each other or are mutually exclusive).

Before being able to conclude the semantics of a portion the
programmer must acquire (i.e. wunderstand) the semantics of the
outer relations and inner portions that he doesn't know yet (if
there are any). This forces him to leave the current portion and
concentrate on other portions of the program. As a result he has to
memorize those semantics he has already understood and remember
them after he returned to the portion he started with.

After understanding and remembering all semantics of outer
relations and inner portions the programmer can conclude the
resulting semantics of the current portion. As this semantics in
general is too complex to allow further processing he additionally
has to abstract it, i.e. develop a concept of the functional
qualities of the portion or of the subproblem the portion solves
within the surrounding program.

This description of the understanding of one portion covers
implicitly that of its inner portions. By viewing a program as a
portion too, the whole process of understanding a program can be
described in the following grammar-like form:

Understanding a program = understanding a portion.

Understanding a portion =

Finding its components, relations, outer relations and
inner portions;

Understanding the outer relations and inner portions;

Associating the semantics of components and relations;

Remembering the semantics of outer relations and inner
portions;

Concluding the resulting semantics of a portion;

Abstracting the resulting semantics of a portion.

Understanding an outer relation =
Finding the portion connected to it;
Understanding the portion connected to it;
Concluding the semantics of the relation;
Abstracting the semantics of the relation.

-81-

A Model of Understanding a Program

The processes of finding, associating, remembering, concluding and
abstracting are assumed to be basic, having the following charac-
teristics:

a) Finding (assumed to be done with the eye) is easy if symbols
representing components, relations and boundaries of regions are
clearly visible and distinguishable and if relations to
components outside the current view are represented with an
indication where to find the related component.

b) Associating is easy if the semantics of components and relations
of the language are distinguishable from each other and if there
is a correspondence between kinds of semantics and kinds of
their symbolic representations. If the language offers a 1large
number of components and relations they should be ordered
hierarchically.

c) Remembering is easy if ther are hints that identify or
characterize the semantics to remember and if the semantics is
not splitted into loosely coupled parts.

d) Concluding is easy if the number of details to include is low.

e) Abstracting is easy only if there are clear indications as to
what concept the resulting semantics of a region represents.

Note: As an interesting result from the characterization of the
processes of remebering and abstracting one finds that not only
does the information from the formal passages not suffice and the
informal passages are needed as well but also what information the
informal passages should contain.

6. Explanations

One purpose of the model is to offer explanations for the problems
programmers encounter when managing large programs. Some examples
of explanations of well-known problems are:

(1) side-effects: In terms of the model they are relations which
are not visible and therefore hard to find.

(2) Self-modification: Increases the number of details that have to
be included for the conclusion of the resulting semantics,
means a misleading correspondence between the symbol in the
program text and its semantics.

(3) Recursion: Hinders the conclusion at the 1lowest 1level of
portions because a not fully understood semantics has to be
included. Yet: offers a concept for abstraction.

-82-

A Model of Understanding a Program

Explanations why certain programming techniques yield "good"
programs can be offered as well, e.g.:

(4) Stepwise refinement: The model neatly coincides with that
method.

(5) One-in, one-out: Reduces the number of relations of a region,
supports abstraction by suggesting the concept " (sub)action".

(6) Abstract wvata tvpes: Reduces the number of relations to
variables, offers a concept supporting abstraction.

7. Useful program properties

Besides the explanation of problems the purpose of the model is to
suggest improvements in program design. If the assumptions of the
model are valid the following suggestions should enhance program
understandability:

a) A program should be hierarchically divided into regions, each
region containing only few details (i.e. few components,
relations, inner regions and outer relations).

b) All components and relations should be represented (e.g. no
implicit declarations). As far as possible all information
determining the semantics of a region should be represented
within that region. Global definitions could be displayed within
the region by interactive workstations.

c) The area in which the components of a region lie as well as its
outer relations should be represented graphically. Lines could
represent relations, shaded areas could represent regions,
colours could distinguish different kinds of components or
relations.

d) There should be few elements in the programming language. If
there have to be many they should be ordered hierarchically. If
it is obvious that combinations of elements will be understood
as components the combinations should be defined as elements.
The representations of the elements should be chosen to
correspond to the kinds of elements.

e) The language should offer different kinds of abstraction

mechanisms to serve as hints to remember the semantics of a
region. The programmer should give hints for remembering the

semantics, e.g. by carefully choosing the names.

f) The machine the programmer has to imagine when concluding the
resulting semantics of a region should have few states or there
should be no machine to imagine at all.

g) The programmer should give for each region a description of its
functional qualities and/or the subproblem that is solved with
it.

-3

A Model of Understanding a Program

8. Final remarks

The author apologizes for not giving any references so far. This is
due firstly to the 1limited space available, secondly to the
inability of the author to trace back all origins of the ideas
based on. The most influential works are listed below.

The reader will have found that many of the recommended program
properties cannot be realized by methods of program construction
alone but must be supported by programming language design and
programming system design. To exemplify his objectives the author
has defined a programming language (see below) wusing graphics as
the means of representation and with a group of colleagues has
implemented a first version of it on a PDPll computer. The project
is supported by the West German government (BMFT/GMD) under grant
no. 083 0214.

References

E.W.Dijkstra The humble programmer
CACM 15 (1972) 10, 859-866

E.W.Dijkstra On the teaching of programming, i.e. on the
teaching of thinking
In : F.L.Bauer, K.Samelson (eds.)
Language hierarchies and interfaces
LNCS 46 , Springer Berlin 1976

T.R.G.Green (Various contributions on the understandability
of language elements as well as on graphical
representations)

C.A.R.Hoare Notes on data structuring
In : C.J.Dahl et al.
Structured programming
Academic Press London 1972

H.-E.Sengler Programmieren mit graphischen Mitteln: Die
Sprache GRADE und ihre Implementation
In : H.Woessner (ed.)
Programmiersprachen und Programmentwicklung
IFB 53 , Springer Berlin 1982

N.Wirth Program development by stepwise refinement
CACM 14 (1971) 4 , 221-227

N.Wirth Programming languages: what to demand and how to
assess them
Report 17 ETH Zuerich, Institut fuer Informatik,
March 1976

-84-

-85-

ANALYSIS OF BEGINNERS' PROBLEM-SOLVING STRATEGIES IN PROGRAMMING

Jean-Michel HOC
C.N.R.S. (Paris, France)

INTRODUCTION

During the last decade, ergonomical studies on programming have been widely
developed, as one can see in recent syntheses of works carried out in the field
(Smith & Green, 1980 ; Shneiderman, 1980). But these studies are also much cri-
ticized : a methodological debate has recently been opened on this problem
(Sheil, 1981 ; Moher & Schneider, 1982). These studies are criticized with being
at the same time too much directed by computer technology and also not giving
enough methodological precision.

It is true that the theoretical frameworks of cognitive psychology do not
permit us to derive very precise models of the psychological mechanisms under-
1ying programming. But these models are, without doubt, richer than the impli-
cit frameworks which have directed a lot of studies on programming. Models are
necessary to base the relevance of the experiments. When they cannot be entire-
1y derived from a theoretical approach, the role played by relatively open ob-
servation of behavior, in order to obtain missing information, must not be ne-
glected. Indeed, it is difficult to generalize the results of such observatio-
nal studies, but they may lead to more relevant and economical experiments, the
aim of which is to be inductive.

This methodological option has directed my own works, as well as those of
authors such as Brooks(1977). Brooks tried to modelize programming strategies
at an expert level, while my contribution related to beginners' strategies,
with application to perspectives of training. The study of such strategies was
necessary for a better understanding of the difficulties met in the acquisition
of top-down programming methods.

I shall restrict myself to reporting the main results of my own works, pu-
blished in french, hence less attainable. They are placed between two studies,
published in english, and about which I shall not speak : an exploratory study
of strategies at diverse levels of expertise (Hoc, 1977) and a comparative assess-
ment of two top-down programming methods (Hoc, 1981).

At first, I shall present a longitudinal and observational study (Hoc, 1978a)
of a training course for a business programming method, widely used in France :
the L.C.P.* method (Warnier, 1975). From it, I shall extract the two essential

(*) "Logique de Construction des Programmes"

i

research topics which directed the design of subsequent experiments : the lear-
ning of the computer operation and the mechanisms in expressing procedures.

I. A STUDY OF A TRAINING COURSE FOR A TOP-DOWN PROGRAMMING METHOD (Figure 1)

Program design strategies are not innate ! They are learned by training and
professional practice. Training is not confined to learning programming langua-
ges, as was the case in the past : now programming methods are taught. In Fran-
ce, these methods are in a large part inspired from structured programming. We
tried to assess the learning of one of them : the L.C.P. method (Hoc, 1978a).
Afterwards an assessment of the same type was done for another method (the
Deductive method of Pair, 1979), by a col]eague (KoTmayer, 1979), and led to
similar psychological conclusions.

The L.C.P. method is a business programming one which consists at first in
structuring the results and the data, and then in "deducing" (according to War-
nier, its designer) the program structure. Each structure is constructed by a
top-down (planning) method, in embedding and chaining two basic constructions :
the conditional structure and the iterative structure.

In an intensive training centre, I have for three months done a longitudi-
nal analysis of the acquisition of this method. I studied the structural com-
patibility between the steps (results, data, program, and flow-chart), and their
correctness (error analysis).

Here I shall only cite the two main results :

(a) The structural compatibility is not very good. Even at the end of trai-
ning, for each step, the subject does a new analysis of the problem, without
clear coordination with the preceeding step. There is no "deduction" of the
program structure from the data structure.

(b) The performance improves when constructing the flow-chart of the pro-
gram. The preceeding steps often contain errors. At the beginning of the trai-
ning course these structure errors mainly come from data representations incom-
patible with the computer operation (for example : data access mode). These er-
rors are corrected when writing the flow-chart.

I interpreted these results by setting up two working hypotheses :

(1) The structure of the data and the results, hence their representations,
are not independant from the processes the subject aims to apply to them. Some
false structures might be correct relating to processing devices well known to
the subject. Here, I shall return to the idea (Hoc, 1977) according to which

-87-

the beginner uses representation and processing systems* based upon devices
other than the computer, before having constructed an appropriate new system
by differenkiation. A characteristic of beginners' strategies is perhaps a
mechanism of adapting known procedures to the computer operation.

(2) The improvement of the structure in writing the flow-chart might lead
one to think that the beginner could not adapt a procedure without access to
the paths the machine will go up during the execution. Another characteristic
of beginners' strategies could be seen as generating the instructions in a si-
tuation of mental execution of the program.

Following these observations, I did experiments in order to study these
hypotheses more closely.

IT. LEARNING THE COMPUTER OPERATION

I carried out two experiments successively with beginners according to a
common paradigm. A problem is used for which it is sure the subject knows a
procedure. At first this procedure is examined in all its details, afterwards
the subject is placed in a situation where, step by step, he commands a compu-
ter device simulated by a VDT. Constraints in the machine operation are gra-
dually introduced. This paradigm has the aim, for the beginner, of right away
introducing the knowledge of results which is deferred in the usual programming
situation (Hoc & Kerguelen, 1980). Mainly the errors and the response latencies
are analysed.

II.1. An updating stock problem (Hoc, 1978b : Figure 2)
An 01d Stock file must be updated from a Transaction file. A computer redu-

ced to four operations is defined : inputting an 01d Stock record, a Transac-
tion one, adding the two quantities, and writing a New Stock record. In the
first situation the subject can see the data. Afterwards he cannot do so any
Tonger. Finally he must do the task blindly, by commanding tests.

The results can be summed up in the following way :

(a) Very quickly the subject elaborates a sequence which I see as typical.
This sequence, valid in processing an 01d Stock record with one transaction,
will be transferred (or its overall structure), and adapted in order to pro-
cess the records of another type (without transaction and with several transac-
tions). This transfer persists up to the Tast situation.

(*) "Systemes de Représentation et de Traitement"

-88-

(b) In the first situation, the subject concentrates on identifications
just before the input of an 01d Stock record (he counts the transactions to
be processed, and afterwards he links up the operations very quickly). In
subsequent situations, the typical sequence must be broken, because identifi-
cations can only be done in the memory cells (transaction by transaction).
The subject then operates less in terms of systematic identifications than of
hypotheses on the number of transactions by record, in order to avoid brea-
“ing up the st~ucture of the typical sequence. If he cccepts to see the hypo-
theses invalidated (error messages), he refuses to test these hypotheses by
himself. This mechanism is still much used in the Tast situation no matter in
what way the subject is invited to command these tests explicitly.

II.2. A sorting problem (Nguyen-Xuan & Hoc, 1981)

The same experimental paradigm was used for a more complex problem : sor-
ting. I can only evoke the results of this experiment which clearly shows the
limits of learning by doing, concerning the computer operation.

Here, the command situation was less constraining. Several procedures were
possible. If the subject clearly transfers his usual procedure (often an inser-
ting procedure), the adaptation rarely led to an optimal procedure taking the
best advantage of the machine operation. This adaptation was directed by a re-
gulation of the mental load (especially the memory load) :

- the subject stops the adaptation as soon as the mental load is judged tole-

rable ;
- the errors provoked by an overload are not sufficiently analysed, and the
subject changes his procedure without these changes giving any improvement.
Learning by doing seems to be of interest only with constraining devices
which direct the subject towards an optimal procedure. It is of Tittle interest
when the number of alternatives is too large.

ITI. EXPRESSING THE PROCEDURES

At the end of the two experiments cited the subject was asked to express
the procedure which he had just used and which was correct. In the first case
(updating), he had to write a flow-chart, structured or not, in the second case
(sorting) he wrote up the procedure in natural language. The aim was to examine
formal and verbal reports in situations where the processing device was well-

-89~

defined and the procedure yet elaborated.

I1I. Flow-charting (updating)
After having perfected a correct procedure of updating 01d Stock records

with 0, 1 or several transactions, the subject had to construct three flow-
charts in that order : the case where the records have one transaction, the
case where they have either 0, or one transaction, and the general case,

A group of subjects (prescribed planning) was constrained to

- use only the two basic constructions of structured programming,
- and, apart the first one, generate the flow-charts in a top-down mode, by
transferring the overall structure (plan) of the preceeding flow-chart.

The other group (free expression) had no particular constraint.

Here I shall present only the three principal results (Hoc, 1979) :

(a) In free expression, the subject expresses the flow-charts in following
the order of an execution : that is the mental execution of the program which
js directing the expression and not a representation of the program structure
which the subject discovers only at the end.

(b) In prescribed planning, the order in which the instructions are writ-
ten notably deviates from the order of execution, but the subject refers to the
production rules (condition - sequence of actions) used in the execution, by
fitting them to the prescribed basic constructions.

(c) Concerning the gross performance (time : Figure 3), in prescribed plan-
ning, we can see that, if these fitting difficulties are embarrassing for the
subject at the beginning, this handicap disappears as soon as the method become
more familiar and the problem more complex. In free expression, the subject
is far too much affected by its increasing complexity.

III.2. Expression in natural language

The analysis of the free expression of sorting procedures in natural lan-
guage led to the following results :

(1) Before expressing the structure of the procedure, the subject for a long
time expresses particular executions of this procedure. This phenomenon is more
especially obvious when the subject has attained a procedure with the princi-
ple of which he is not familiar.

(2) The top-down mode of expressing the control structure is more often
used for the sub-structures than for the super-structures.

(3) The conditional constructions are more difficult to express than the
iterative ones.

-90-

CONCLUSION

These experiments bear out the hypotheses set up after the field study,
but they show a larger complexity in the beginners' strategies. It is true
that they are characterized by adapting known procedures to the computer ope-
ration, and by a mental execution of the program. But we have also seen that :

- if this adaptation can be facilitated by command situations where the know-
ledge of results is without delay, these situations must be sufficiently cons-
training so that the subject took the best advantage of the machine operation,

- we can see strategies of progressive generalization of a sequential proce-
dure,

- it is necessary to express an execution of the procedure (even if it is al-
ready elaborated in a command situation), before becoming aware of its control
structure, '

- finally, the conditional structures are difficult to express, possibly when
the corresponding tests are not explicitly performed in the execution (other
more complex control structures are possible).

I guess that a too early training of top-down programming methods should
be avoided, before the subject has learned the constraints of the computer
operation on the overall structure (plan) of the procedures and knows a wide
range of concrete plans to be transferred. It has not been proved that these
top-down methods are always feasable even at an expert Tevel.

I have begun a research program with the aim of characterizing the compo-
nents of expert's strategies and their conditions of implementation, and in
particular top-down strategies. The practical problem is to contribute to
the design of computerized aids in programming. The results of this research
may permit a better setting up of training problems.

REFERENCES

Brooks, R. : Towards a theory of the cognitive processes in computer program-
ming. International Journal of Man-Machine Studies, 1977, 9(6), 737-751.

Hoc, J.M. : Rnle of mental representation in learning a programming language.
International Journal of Man-Machine Studies, 1977, 9(1), 87-105.

Hoc, J.M. : Etude de l1a formation a une méthode de programmation informatique.
Le Travail Humain, 1978% 41(1), 111-126.

Hoc, J.M. : La programmation informatique comme situation de résolution de
probléme. These de 3eme Cycle, Paris, Université René-Descartes,iS?Gb.

-9]-

Hoc, J.M. : Le problame de la planification dans la construction d'un pro-
gramme informatique. Le Travail Humain, 1979, 42(2), 245-260.

Hoc, J.M. : Planning and direction of problem-solving in structured program-
ming : an empirical comparison between two methods. International Jour-
nal of Man-Machine Studies, 1981, 15(4), 363-383.

Hoc, J.M., Kerguelen, A. : Un exemple de dispositif infermatique expérimental
pour la psycho-pédagogie de la programmation. Informatique et Sciences
Humaines, 1980, 44, 67-86.

Kolmayer, E. : Développement et évaluation d'une méthode de programmation.
Nancy, C.R.I.N., 1979, 79R074.

Moher, T.. Schneider, G.M. : Methodology and experimental research in soft-
ware engineering. International Journal of Man-Machine Studies, 1982,
16(1), 65-87.

Nguyen-Xuan, A., Hoc, J.M. : Adaptation d'une procédure connue aux regles de
fonctionnement d'un ordinateur : la sériation. Paris, E.P.H.E,, 4981.

Pair, C. : La construction des programmes. R.A.I.R.0.-informatique, 1979,
13(2), 113-137.

Sheil, B.A. : The psychological study of programming. Computing Surveys,
1981, 13(1), 101-120.

Shneiderman, B. : Software Psychology. Cambridge, Mass. : Winthrop, 1980.

Smith, H.T., Green, T.R.G. : Human interaction with computers. London :
Academic Press, 1980.

Warnier, J.D. : Les procédures de traitement et leurs données (L.C.P.).
Paris : Les Editions d'Organisation, 1975.

x' (1 time)
-92- distinct (Oor 1time) {
x” (1 time)
existence of SRS -
root(s) (0 or 1 time) ldis!inct (Oor 1 {x (1 time)
result related time)
STEP 1 : Output file to an equation e .
(E times) existence of root(s) {text: **no real root
_ (0 or 1 time) (1 time)
Input file {equation (E times) {a, b, ¢ (1 time)
STEP 2 :
A =0 (Oorltime) A >0 (Oorltime)
Run file (@ @
A<0 (Oorltime) | A =0 (Oorltime)
begin program * (begin equation (begin root(s)
(1 time) (1 time) (1 time)
processing an equation | processing with root(s) | processing of
)] distinct roots
STEP 3 : Unit of processing ~ { (E times) (0 or 1 time) (0 or 1 time)
@ ®
end of program T processing without processing of
roots double root
L (1 time) (0 or 1 time) (0 or 1 time)
end of equation end of root(s)
(1 time) (1 time)
step 4 .
eanen | 02
4<0 ‘ 420 SIEP 5 :
01. reada, b, c
02. A=b’-4ac
if A<0goto07
03. ifA=0goto05
04. x'=(-b+Vi)/2a
x"=(-b-vAa)/2a
o7 l it l | o I 03 04 IProcess« write x, x"
without root double root distnct roofs :
go to 06
05. x=-b/2a
- write x
06. go to 08
07. write ‘‘no real root”
08. read a, b, ¢
|E°r:,°‘ 06 if a=0goto02
09. stop.

os

Figure 1 : L.C.P. analysis of second degree equations processing.

The five steps : results, data, program, flow-chart, detailed

instructions (following Hoc, 1981)

OLD STOCK FILE

TRANSACTION FILE

NEW STOCK FILE

number quantity number quantity number quantity
=g 5| 10 4 |-18 — 1 119 o
| 6| 18 6 |-16 _ 2 |20
| 7 | 12 6 | 90 ; 3 |45
v 8 | 26 7 | s0 ‘_‘
_ 9 | 1 8 | -20 |
_ 99 [0 8 | 30 |
ENTER 05 81 % ENTER T WRITE
88 0
_ |
| (
l
| COMPUTER _
| _ ¢
M v
o v \i MEMORY CELLS _
| / \\\V | LAST EXECUTED INSTRUCTION :
\ / 'l |
! \ /" CELLS 0S ' CELLS T ;
I | ENTER 0S
. 435 3 |-13 —e— --
| ! -
| _ Vs
v .ﬁ ADD
| Lo s e o =
; o
i s o ap B e e R s i . e e - s 4 B g i P
Figure 2 : Updating device with the four operations and the two tests (following Hoc, 1978b)

—_—_— — e - -

- am e o P o -~ ———

Figure 3 :

& time in mn

13 -

12 4

11 -

10 -

A\
A)

-94-
Effect of a top-down method in writing a flowchart with increasing
problem complexity (following

Hoc, 1978b) O free expression

® prescribed planning

' T -

¢ c2 c3 Problem
complexity

-95-
PROBLEN SOLVINC BY NOVICE PROGRAMMELYS

Hanl: Kaohney
Open University
I1ilton Keynes, Enpgland

1) INTEODUCTION.

In the pages that follow we present & model of the behavior of novices who are
learning artificinal intellipence programning. Our novices are Open University
students taking n third level course in Cognitive Psycholoey. As this course
is favorably oriented to computer models of cognitive processes, the students
are given a course in artificial intelligence programming early in the
zcadenic year. Their progranming is self-taught from a Programming IManunsl,
althoush they are provided some help from course tutors during their early
learning phase. A detabase-mnnipulation language, SCLQ, hes been speciunlly
desipned (Fisenstadt, 197%) for them and offers an easy access route to high
level prograrming concepts. We define a novice as a person who is not
conversant with other programming languages and who has read all of the (LT
programiing manual and completed three 'course dssignment' Study Center
t.ctivities before setting out to perform experinental tasks.

4 concise summary of one of these problems (to be discussed in some detail in

X

“ection % below) is:
Given & datubase describing objects piled up on one another as follows:

on on on on on
SANDVICH- === >PLATE------ PHVVWSPAPER- === >BOOK --emmm >TAPLE-ce=-- >FLOCKH

write a program which simulates the effect of someone firing a very
powerful pistol aimed downwards at the topmost object (sanpwich),
vieldins, the final database shown below:

on on on on on
SANDYICH-~-=~-- >PLATE-~---- >NEWSPAPER---—--- >BOOK ~-==~= >TABLE-cecuw >FL.OOR
[} | | | | i
| | | | | |
| has : has : has ! has \ has | has
| | | | | |
| | | | [} [}
| | | |] |
T T >BULLETHOLEC === = e e e |

The solution to the problem, in SOLO, involves writing only two lines of code:

TO SHOOT /X/
1 NOTE /X/ HAS BULLETHOLE
2 CHECK /X/ on ? .
2A If Present: SHOOT ¥*; EXIT
2B If Absent: EXIT ’
DONE

We have performed detailed studies of six Subjects (and other 3ubjects in less
detail) who were given this problem to solve. The studies include concept
rating, recall, and grouping tasks, transcription tasks, program understandineg
tasks, questionnaires, and verbal protocols taken while they worked on the
specific problem. Of those we studied, only two produced an adequate solution.
There are obvious differences between expert programmers and novices, but
there are also intriguing differences among novices themselves. We distinguish
‘talented' from other novices, and in this paper we try to indicate a couple
of ways in which these two groups differ and ways in which they are alike. But
first, we place our research in the context of other recent research into
problem solving behavior.

O
?) BACK.CROUND AND RELATED MODELS

We are interested in providing a model of the mental processes which occur
when novice programmers transform a verbal statement of & problem into a
programmed solution to the problem. Problem solving in such a task involves
understanding what the problem is, findinp or devising an algorithm, and
writing and debugging code. This is the usual concern of anyone studying
problen solving, and our model is in sone respects an instance of what can be
fairly described as the 'modal model' of problenm solving.

The nmodnl model of problem solving exhibits the following features. Firstly,
therc is a phase of 'problenm understanding' during which the problem statement,
is transformed into a mental structure which represents those aspects of the
problem which are critical to its solution. Secondly, there is a phase
somewhere between problem understanding snd the runnine of 'solution’
processes, that is variously described as 'method finding', 'general solution
approaches’, 'schema activation', and so forth. It is durings this stage that
domain knowledge is accessed, knowledge which acts as a bridge between
understanding and solution processes. For exanple, a problem statement in
programming may contain information about database structures and alterations
to be made to those structures but not mention recursion as an sappropriate
method for achieving the desired results. The person solving the problem nmust
recognize the relevance of the particular method on the basis of the given
features of the problem statement. Finally, there is the 'solution' phase
itself. Often this stage is scen as somewhat less problematic than the other
phases. Access to particular structures in the method-finding phase is often
thought to provide direct information about the way the nethod should be used
to transform the mental representation of the problen into & solution. That
is, the method is often viewed as a solution framework into which elements of

the problem are slotted, although other processes may then operate on the
instantiated and filled framework.

The modul model has also been used to explain problem solving in arens in
which there is no 'reading' phase - like po and chess. In these problens
reading is replaced by 'board scanning’', understanding is equivalent to
'recognizing nmeaningful patterns', and method finding involves selecting the
best move from the alternative possibilities. Experts are described as having
the ability to classify larpe numbers of meaningful patterns and laree
confipurations of meaningful patterns whereas few and simple patterns trieper
the corresponding knowledge of novices.

Very often models of problen solving featuring these three phases are only
really concerned with one of the phases in any detnil. Below we discuss thres
such nodels - each selected because they cover a different aspect of the nodel
and because they are related to or differ in some important respect from our
own model.

?.1) The Understanding Phase.

" A vell known model of the understanding stage in problem solving is the
JUDERSTAND program of Hayes & Simon (1976). In their model 'problen
understanding' involves two subprocesses, Language Understanding and lodel
Construction. The product of these processes is a problem space containine the
initial and goal states of a problem, the problem objects and their properties
and relations, and, finally, the operators for transforming the initial into
the goal state, plus any restrictions on the use of the operators. This final
representation can then be operated on by a special purpose problen solving
mechanism. If the problem is not solved in this 'Solution' phase, the problen

understauding mechanisms are instantiated a second time and the process begins
again.

-97~
The ULNDERSTAND program operates on 'well defined' problems. These are probtlems
thiat specify all the information a problem solver needs to solve the problen.
A problem with this model from our point of view is that programning problems
are not well defined, in the sense that 'operators' are not usually explicitly
indicated in programming problem statements. Programmers have to recognize
which operators are relevant from an analysis of various features of the
problem statement. If the problem does not cue a known algorithm, then the
progranmer must devise one. Brooks (1977) makes much the same observation and
introduces the notion of 'method finding' to account the programmer's need to
determine a suitable algorithm, but he has nothing to say about method finding
processes other than to indicate reflections of such processes in the
protocols he anulyzed. Part of our goal is to demonstrate such processes in
operation.

Fqually important, in UNDERSTAND, 'Solution Process' do not bepin operating
until enough is known about the problem to get the processes going.
Unfortunately, this 'enough' involves knowing everything. In 'well defined’
problens solution processes cannot get started until the operators (and the
restrictions on their use) are known, and in the 'Tea Ceremony'’ problen, which
is used by Hayes & Simon to exemplify the operation of the system, this
information is not finally given until the penultimate line of the problem
statenent. Thus, problem understunding processes necessarily precede any
attempts at a solution to the problem.

In programming the solution process actually begins where problem
understanding begins: at the first line of a problem statement. In our model
Understandins and Solution processes co-occur. Indeed, in many cases, it wonld
be difficult to distinguish between 'understanding' a problem and knowing the
solution to the problem. If, while reading the problem statement, one of our
Subjects states - "Oh, this is going to be like the 'Infect' program. 1 just
have to insert these two triples into that framework and that's it!", - and if
the Subject has a working model of the behavior of the Infect program, then he
has solved as well as understood the problem in the same moment. The novice
may not have much knowledge of programming, but what little he has is brought
to bear on understanding and solving the problem wherever opportunities arise.

2.2) Schena Activation.

Chi, Feltovich & Glaser (1980) have undertaken extensive investigations of the
cognitive structures which novices and experts have acquired in the domain of
physics, and the manner in which this knowledge is indexed when these
disparate groups set out to solve physics problems. They show that the
expert's schemas are organized in terms of physics solution principles, while
novice's schemas are based in 'object' categories with pointers to equnticn
formulae for specific problems.

Chi, Teltovich & Glaser show that both experts and novices proceed in solving
problens by first categorizing the current problem. This categorization makes
available information whicli can be used to guide further understanding/
solution processes. The major problem confronting the physics exnert - the
same problem confronting the chess expert - is in choosing anmongst candidate
schemas. Solution processes are more or less non-problematic once the correct
schema has been selected from the candidate schemas.

Finally, Chi, Feltovich & Glaser conclude that novices are 'stimulus bound' -
that they are influenced more by characteristics of the problem text
(keywords) than by the principles of physics that underlie a wide runge of
such problems. The expert, on the other hand, is able to drrive sccond order
problem characteristics from the same textual features that influence novices
and candidate schemas are then keyed by these second order representations.

Anothier way of talking about the no¥res discussed by Chi, Yelievielh and
Glaser is to say that a novice can read throush s problem statement und even
develop & solution without ever discovering what the problem reslly is. This
is the position which we take. Cur view is that problem nolving involves
constructing and running a mental nmodel of o problen, and that prosramming ani
vorld-knowledge interact to direct and constrain the mental models that ure
constructed. The notion will be elaborated below.

2.3) The Solution Phase.

A model of the running of solution processes by experts in the writine of
coriputer programs - given an adequate representaticn of the problem plus an
appropriate mediating algorithm - has been provided by Prooks (1977). In
Brooks' model the most complex processes are those concerned with determining
the effects of a piece of code, and updating the problen model once a sconent
of code has been generated. Code penerntion itself is a more or less
straightforward translation process. Coding failures occur, oif course, but
this is becuuse the coding rules are inadequately specified or are generate?
in 'circumstances for which |they are] not appropriate' (Brooks, 1977). In our
studies we find that novices have little difficulty with coding per se - other
thun minor syntactic details, which are handled automatically by 350L0 - but
there are larpe differences in novices in their ability to evaluate a seement
of code once it has been renerated. A large part of our investigations huve
been concerned with discovering the evaluation rules used by novices once they
have generated a segment of code.

Although we are in essentianl agreement with the general cutline of this modal
model of problem solving it has a number of weaknesses. BEven in sinple domaing
like puzzles there is evidence that transfer of learning euasily occurs only in
particular conditions (Reed, Ernst & Banerji, 1974: Hayes & Simon, 1974; Luper
& Bauer, 1978). In complex domains like mathematics the problems of transfer
are magnified (Schoenfeld, 1930). 3choenfeld hus shown thst possession of u
relevant store of knowledpge is not & sufficient basis for solving mathematics
problems. The development of skill in this domain involves the construction of
complex indexes to that knowledge. Schoenfeld demonstrates that indexing is
not always a simple matter of 'keying' knowledge but may involve uapplying
beuristics to heuristics. That is, the novice must be taught not only useful
rules of thumb for accessing relevant information, but must also be taught
heuristics for selecting amongst accessed concepts. We will show below that
even without 'indexing protlems', that even when novice programmers are 'led
by the nose' to a problem solution (& prosram that the Subject can 'initute’
or 'copy') problem solving is often a laborious and problenntic tusk that ends
in failure. :

liovice programming behavior is only partially explainable in termns of re-
trieval and direct application of schemas acquired during a fairly brief
training phase. As focus shifts away from experts and onto novice and naive
problem solvers, explanations based on domain specific knowledpe tend to be
supplemented with general world knowledge. The processes through which these
different sources of knowledge are said to interact are various, dependins on
the researcher, but they are often now discussed in terms of the constiruction
and evaluation of mental models (Gentner, 1931; di Sessa, 1981; Lisenstadi,
Laubsch & Kahney, 1981; Norman, 1982; Kahney & Eisenstadt, 1982). The general
notion behind mental models is that of a cognitive structure that is
constructed in working memory and 'run off' in order that its behavior might
be observed. The mental model that is constructed is presumed to be a function
of a large number of factors, such as the extent of conceptual knowledge, the
nunber of concepts the person has mastered, the rules for combinings and
evaluating models, and so forth. We shall not discuss most of these issues in
this paper. In the next section we will discuss differences hbetween novices in
terns of their mental models of SOLO propramming concepts and in the final
section of the paper we will briefly discuss an interpretation theory for

-99.
scoring verbal protocols. The theory conforms, in greneral outline, to the
modu]l model described above.

%) MENTAL FODMLS

To reiterate something that has already been szid, ihere are obvious
differences betwcen expert programmers and novices, but an equally important
distincticon is that between 'talented' and 'average' novices. That is, riven
the sanc material to study, and an unlimited amount of time in which to muster
the material, some newcomers to programming 'get it' and some don't. Talented
novices differ from the average in the number of programming concepts with
which they are familiar and in the degree to which familiar concepts have been
understood (i.e., two novices may both be familiar with the NOTE and PRINT
prinitives in SOLO, but one may think they both serve the same function).
Talented novices have much in common with experts in terms of the way their
knowledge is organized, and in the way in which it is brought to bear in
solving programming problems (Kahney, 1982). Unlike averape novices, much of
the new knowledge of the tulented novice is organized in menory as 'plans' for
achieving particular program-effects, such as 'Conditionsl-side- effect-on-a-
datubase', or 'Generate-next-object-and-side- effect-each' (Eisenstadt,
Laubsch & Kahney, 1981). We have no evidence that 'talented' novices spend
more time or effort in understanding programming; we have evidence that
'averapge' novices spend considerable time trying to come to grips with
concepts like recursion. But the talented novice is one who develops & model
of 'the way recursion works' (albeit, an inaccurate model in many respects)
while the average novice commits a segment of code to memory with the rule
that the segment has a particular effect without having a model of the way the
effect is achieved. The model which talented novices develop of recursion can
be graphically described as:

v g
<{PROCEDURIB-UAME> /%/

I

[}

|

: 1 NOTE node relation node
: 2 CHECK node relation ?

: I1f Present: <PROCEDURE-NAME> s EXIT
] |

|

That is, recursion is seen as a kind of looping operation where successive
nodes in a particular database structure are 'fed back' to the 'top' of the
procedure. The effect causes the program to start up again and perform what-
ever action is indicated at Line 1 of the program on the node delivered to the
parameter slot. We have derived this model from one Subject's performances on
various tasks, during one of which the Subject can be seen on {ilm indicating
the loop with her pencil. The task involved understanding 2 program written by
another novice. When reading this segment of code:

CHECK /X/ WORKSFOR 2
If Present: IMPLICATE * ; EXIT

the Subject says: "Check X works for.... somebody. If so...." Lat which point

the Subject used her pencil to trace a loop from the word IHMPLICATE back up to
the title line of the progran] "....back to the beginning.” S4% uses the coding
framework for writing her own recursion programs and also as a model which cen

-100-
be manipulated to determine its output. S8 produced the 'correct solution’
progran that is provided on page 1 of this paper and the following is a
summary of the protocol produced by this Subject after the program had been
typed in at the computer terminal but before it was run:

Right, so0.... To Shootup X, let's say X is a sandwich.... It notes in the
database X has bullethole. It then checks whether X is 'on' anything. X is on
plate, so it will do that to plate. So that should keep on doing that:
plate's ‘on', check, and so on and so on. If it's not 'on' anything it's
okay to just exit. Right.

Up to this point S8's discussion and coding of the program has been quite
abstract in the sense that only programming constructs are used or discussed.
But when the program is evaluated, variables are replaced by database objects
like 'sandwich' and 'plate’' and the recursive segment evnluusted to the depth
of the second node ("X is on plate, so it will do that to plate"). The next
sentence indicates something like "If it'll do it to the first two nodes,
it'11 do it to all of them."

The average novice on the other hand writes recursion procedures without a
model of the behavior of the program, and therefore needs to use the computer
to evaluate code. S5, who is not untypical of the averzge novice in this
approach to writing programs, made several attempts to produce a procedure
that would produce the required output. Since this Subject hud no model of the
behavior of the programs written on successive attempts, all the Subject could
do was type a program in at the terminal and 'wait for the computer to
evaluate it'. If the desired output occured the program worked (end one of our
novices did write a program which produced the desired oulput - for the wrong
reasons - but could not say how the program achieved its effect) and if not,
the program had to be debugged. The usual strategy adopted by novices without
rnodels of program behavior is to 'imitate' a program found in the programming
manual. These programs are not hard to find as the first line of all our
problen statements indicate where to look in the Programming Manual if help is
needed with the design of a program for the particular problem. Summarized
extracts from the protocol of S5, each taken after a different attempt to
write a program, are these:

Experimenter: What's going to happen when you run this procedure? S5: 1 hope
it will go through that sequence and shoot the floor. The database is in and
I've copied that progran [from the Programming Manual] exactly.

This example in the book.... You've got one 'state' and one 'relationship’
and in my example we've got three things. We've pot two states and one
relationship. And that's not fair. I thought that following the example in
the book would lead me through automatically, but I've decided the problem's
pot more, um, states in it than the problem in the Unit.

Will it accept.... Well, I can alwéys type it in and try.... And it will
correct me won't it?

Meaningless example in the text.

The keywords and phrases in this protocol are ‘'hope’, 'copied’, 'following
this example' and 'I can always try it and see'. Trial and error, the last
hope of a person with no other resources. Even so, this short extract is
insufficient to indicate the grief experienced by many novices who find this
problem beyond solution.

31.1) A Program Transcription Task.

Differences between talented and average novices are found in the entire
range of tasks they are asked to perform. Program transcription is a task in

-101-

which programners are simply required to copy a program which they are allowed
to view five times for a period of ten seconds on each viewing. All Subjects
are told that they should try to transcribe the program in as few attempts as
necessary. Extraction of information is stressed; they are told to guess

wherever possible, as they are allowed to cross out errors that are discovered
on subsequent viewings.

The 'program langu=ge' used in the task is an abstract version of SOLO.
Although neither the novices or experts had ever seen the 'language' before
perforning the task it is presumed that the novices have an advantage in that
the relationship between SOLO and its abstraction, while the experts have the
advantage of knowing there is a structure to be extracted, and this structure
is an extremely simple one. The subjects are given five different colored pens
and use & different color for each recall attempt. We are thus able to
determine the amount and nature of the information extracted on each viewing.
Figure 1 is a copy of the program we use for analysis. It is the last of three
programs which Subjects are required to transcribe, so all subjects by this
time have had practice in transcription and opportunity to learn the
structural features of the language.

TEST flat has 2 bedrooms
IF YES: looks promising ; CONTINUE
IF NO: too bad ; EXIT
TEST rent less than £100
IF YES: really looking good ; CONTINUE
IF NO: too expensive ; EXIT
TEST neighbors are friendly
IF YES: keep looking ; EXIT
IF NO: take it ; EXIT

_Figuré Vs

In Figures 2, 3, 4 & 5, the 'framework' is given of the first recall of the
expert, the talented novice, 58, and two average novices, S5 & S10, respect-
ively. The expert currently writes programs in Assembler (MACRO-20) and Pascal

and has considerable experience in writing FORTRAN and BASIC programs, and
some experience in ALGOL 68.

TEST flat has 2 bedrooms
¥ -YES: ; EXIT
IF NO: CONTINUE

TEST
IF YES: s BXIT
IF NO: CONTINUE

2LsT
IF YES: ;3 EXIT

iF RO CON2TIUE s EXIT

Fipure 2.
TEST flat has 2 bedrooms

IF¥ YES: looks good ; CONTINUE
IF NO: too bad

Figure 4.

TEST flat has two bedrooms
IF YES: looks promising; CONTINUE
IF NO: too bad ; EXIT
TEST
IF YES:
IF NO:
TEST
IF YES:
IF NO:

Figure 3.

TEST flat has 2 bedrooms
IF YES: looks promising : CONTINUE
IF NO: too bad : EXIT

TEST

Figure 5.

As can be seen (Figures 4 & 5), even after considerable practice at trans-
cription, the typical novice is still extracting information from the programs
as one would extract information from a novel: & line at a time. S5 needed all
five allowable viewings to transcribe the program perfectly. The strategy used
by S5 was to extract information from each 'TEST' block at a time, and to

-102-

scarch for errors in the immediately previous recall attempt. $S10 hnd a
correct transcription after four viewings of the tarpget program, and the
recall strategy was essentially the same as that of 99.

Both 58 and the Expert (Figures 2 & 3) however extract the syntactical
structure of the program plus the first few lines of progran text on the first
viewing. The expert extracted less text and more of the structure than 5% on
this first viewing. The expert wrote and crossed out CONVINUE on the last line
of his recall and replaced it with EXIT - presumably using his knowledre of
programming to correct his recall. On thc second recall the expert corrected
the flow of control errors (he'd pot them backwards on the first recall - an
error he might have avoided then if he had extracted any of the textual
information) and recalled four lines of text. Altogether the expert took four
viewings before transcribing the entire program.

583 ulso required four viewings to transcribe the entire program. On the second
recall 58 extracted the rest of the text, although the last two lines of text
were recalled in the wrong order. This was corrected on the third piass, and
the final line of text was added on the fourth.. The point is that the talented
novice has extracted a model of the important characteristics of progran
structure, and the model i3 not unlike that of the Expert.

4) AN IKTERPRETATION THEORY FOR PROTOCOL ANALYSIS

In this section we briefly discuss the behavior of novices from the point of
view of the strategies they adopt when confronted with a problem statement. We
argue that novices and experts are alike in bringing whatever programming
knowledge they have to bear as early as possible in the reading of a problen
statement. This is the same as to say that solution processes operate in
parallel with understanding processes. Skilled novices have an advantage over
unskilled novices in that they have program models, as discussed above, which
can be brought into the service of understanding mechanisms. Thus, if subject
55 has a model of 'recursion’' and this model is trigpered early in the readinr
of the problem, then the model can be used to direct understanding processes
to important aspects of text. We hypothesize that the programming problen
solving behavior of a novice can be characterized in terms of the following
types of behavior:

1) Method finding. The novice will attempt to classify the problen in terms
of problem types with which he is already familiar. This behavior is related,
of course, to reading a line or several lines from the problen statenment.

2) Evaluation of candidatc methods. This will involve a search for
information which would instantiate a candidste method. A particular method
might require » particular type of database structure, for exanple. I{ s0, we
would expect to see the problem solver actively search for such infornation if
the method is selected as a candidate.

7) Instantiation of a method. The novice will begin thinking in terms of the
wiay the problem can be realized in a program. When a method is instantiated
the novice will assimilate what is already known about the problen to the
instantiated schema, and will use the schema for problen solving - setting up
expectations about what is to come, to detect conflicts between what is known
and what is expected, and so forth.

4) Coding. This is self explanatory.

5) Evaluation of code. The novice will run a mental model of the behavior of
his program. If evaluation indicates the code is successful the novice will 70
on to (6) below. Otherwise he will go through the previous steps in descending
order (4,3,2,1).

€) Testing. The novice will type his program in at the terminal and run it.

We have formulated the theory as a set of rules for scoring the verbal
protocols provided by our Subjects while they were writing programs. The

-103-

smallest segment of protocol used in our analyses is s sentence, or a clause
if there is a prominent pause in the Subject's speech. Buch line of protocol
is assigned to one of various behavior categories. A simple example of a rule
for scoring the protocols is in assigning a line of protocol to the READING
category. A line of protocol is scored as an instance of READING when the
Subject reads a line from the problem statement.

The program writing behavior of novices is not random, but guided by

various strategies. A strategy is a patterned sequence of behaviors all of
which are related to a certain goal. We need to be able to subsume larger
segments of protocol than the single line if we claim that we have a 'theory’
of novice programming behavior, and in support of such a claim we examine the
'derived' strategies of our Subjects by applying the interpretation theory to
the protocols and comparing the strategies with the theory outlined above.

Strategies are 'derived' by applying the scoring rules to each segment of
protocol. In the remainder of this paper we shall be concerned only with one
type of segmentation, involving the Reading phase. The Reading phase begins
when the Subject reads the first line of the problem statement and ends when
he has read all the problem statement. The Subjects discussed below were asked
to read -the problem statement one line at a time and to tell the experimenter
everything they knew at that point in time - what the problem was, how they
might tackle it, any predictions they had - before going on to the next line
of text. They could make notes, consult notes or the programming manual, or
any other source of information, as and when they liked. The analysis below
concerns the scoring of the first segment of Reading protocol - everything
said between reading the first and second lines of the problem statement -
from Subjects S8 & S5.

In summary, we hypothesize that the primary strategy employed in progranm
writing is finding a classification for the current problem, and that attempts
at classification will occur early rather than late in problem understanding.
When a problem can be related to a class of problems for which solution
techniques are already known, a major part of problem solving has been
circumvented. The 'Classification’ strategy involves RETRIEVAL of a candidate
schema, REHEARSING the schema, EVALUATING it with respect to the current
problem. If the result of the EVALUATION is positive then the schema will be
INSTANTIATED, which leads to PREDICTING the content of the rest of the problem
statement, or ASSIMILATING what has already been read to the instantiated
schema. ASSIMILATION cannot occur after only the first line of the problem
statement, since the first lines of our problem statements never contain
anything that might be assimilated to a schema. A strategy is initiated by
READING of a line from the problem statement. Figure 5 shows the category
configuration of the Classification strategy.

CLASSIFICATION:

(A) READING-1

(B) RETRIEVAL

(C) REHEARSAL

(D) EVALUATION

(E) INSTANTIATION

(F) PREDICTING or ASSIMILATING

Figure 5.
Here are the protocol scoring rules for interpreting lines of the protocol
(Instantiation and assimilating are not discussed, as the protocols do not

contain instances of these categories of behavior):

1) READING: A person reads a line from the problem text.

-104-

2) REREADING: A person rereads a linc from the problem text, except the last
line. That is, if a person has read lines 1, 2 & % and rercads either/both
line 1 or 2, then REREADING has occurred.

%) FOCUSSING: A person rereads the line of text last read. That is, if a
person has read lines 1, 2 & 3 and rereads line 3, then FOCUSSING has
occurred. The behavior is assumed to be related to RETRIEVAL failure.

4) EXPERIMENTER-COMMENT: Any comment made by the experimenter. The
experimenter is indicated by 'E:' at the front of a line of protocol.

5) RETRIEVAL: We consider that retrieval is equivalent to activating some
structure in LTM. Activation of a structure is sometimes signalled by Subject
statements such as "That reminds me of iteration". This statement sifnals the
activation of the 'iteration' schema. RETRIEVAL is often a response to
READING, REREADING, or FOCUSSING, and a line of protocol immediately
subsequent to these processes should be examined for indications of this
process.

RETRIEVAL may either be 'cued' or 'associative'. We regard responses to
READING, REREADING, and FOCUSSING as cued RETRIEVAL. The concepts that are
used subsequently to cued RETRIEVAL of a particular concept are considered to
be associatively related to the particular concept, and made available through
an associative link. If a person READs "On page €0 of [the Programming Manunl |
we looked at a method for making a particular inference 'keep on hapo:ning'”,
and responds: "Is that 'iteration'?" then 'iteration' is an example of cued,
or C-RETRIEVAL. 1f the Subject then says, "Or maybe it's 'recursion'" then
‘recursion’ is an example of associative, or A-RETRIEVAL.

6) PROBE: A person PROBEs what he knows about a concept by explaining it to
himself (aloud) or to the experimenter, or when he provides a definition or
makes an attempt to construct a meaning for a particular concept, and so
forth. An example would be if a person thought the current problen had X
something to do with recursion (a RETRIEVAL) step, but then had to determine
what 'recursion’' might be (e.g., "Is that where you use.... etc."). We know
from pilot studies that both talented and average novices 'probe' their
knowledge of a particular concept before trying to apply what they know.

7) EVALUATION: This activity takes several forms. EVALUATION occurs when a
person determines the output for a segment of code he has written. Also,
EVALUATION occurs when a person attempts to determine the appropriateness of a
particular algorithm for the current problem. It may sometimes be difficult to
distinguish EVALUATION from REHEARSAL.

8) PREDICTION: The person states an expectation of some sort, generally about
the type of program that is required, or about information that is yet to be
given, and so on.

9) META-COMMENT: The person explains why he thinks some thing, or comments on
the stratepgy being followed or in some way indicates the processes that are
occuring in his quest for a solution to or understanding of the problem.

The first protocol below is that of S%. At the left of each line of protocol
(the different lines are indicated by numbers in brackets) there is the
category label which has been applied to that line. Lines 2, 5, 8 and 10 have
been deleted from this protocol as have several lines from the protocol of S5.
The deleted lines had been labelled 'UNACCOUNTED' as they could not be
classified in terms of the categories indicated in the interpretation theory.
Invariably these lines contained single words such as "Um...." or "Well....".
lo account of this type of comment will be given in this paper.

-105-
(PROTOCOL, SKEGMEKT-1, S8)

HEADING (1) "On page 80 of Units three to four we looked
at a method for making a particular inference 'keep
on happening'."

C-RETKIEVAL (3) 1Is that called ‘iteration'?
A-RETRIEVAL (4) Ho, 'recursion'.
PROBING (6) 1 can remcmber something about being told

something about the distinction between iteration
and recursion and one goes sort of like along a
database and the other sort going down.

META-COMMENT (7) Well, that's how I sort of thought of it.
EXPERIMENTER-COMMENT (9) B: Allright. Any further expectations or any....?

EXPERIMENTER-COMMENT ~ (11) E: I just want to know everything you, uh....
' I mean as you read it....

PREDICTION (12) So.... I think this is going to say something
about what happens when you keep on applying a

Figure 6 sumnarizes the derived strategy for this protocol segment.
S8:

READING

RETRIEVAL
"PROBING

PREDICTION

Figure 6.

The structure of this first segment of S8's protocol is in good agreement with
the theory. The reading of the line results in the retrieval of relevant
information at & fairly high level of abstraction (recursion und iteration).
And the retrieval itself is followed by sclf probing. The exception is the
last category, PREDICTION. We associate this caterory of behavior with an
'Instantiation' strategy (not further discussed here) and we nre led to infer
that at this point S5 has already instantiated one of the candidate nodels
mentioned in lines 3 & 4. Subsequent lines in the protocol confirm this
inference (further details in Kahney & Eisenstadt, 19532).

(PROTOCOL, SEGMENT-1, S5)

READING-1 (1) "On page eighty of Units three to four we looked
at a method for making a particular inference
'keep on happening'."

FOCUSSING (2) Xeep on happening....

META-COMMENT (4) 1 am very surprised, because I didn't think it
vas going to be detailed like this.

FOCUSSING (6) An inference keep on happening....

FOCUSSING (9) Keep on happening....

-106-

META-COMMENT (11) That reminds me of something.

META-COMMENT (12) 1'm trying to remember what the words were that
it reminds me of.

FGCUSSING (14) Yeep on happening....

C-RETRIEVAL (16) For-Each-Case-0f, it reminds me of.

C-RETRIEVAL (17) And then 'inference' is where you have, um....

PROBING (18) Two statements, and the database is able to fornm,
UMe oo

PROBING (19) Or the program is able to modify the database by,
UMe oo o

PROBING (20) Putting in a new relationship on the basis of

relating to relationships that were already in
the database.

PRORINC (21) So you could have two triples and they would
imply, or the....

PROBING (22) The program has been made so that, um....

PROBING (23) The existing two triples will form an inference
which is formed....

PROBING (24) Which is stated oni...

PROBING (25) ...the database as a third triple.

PRORING (26) That's what an inference is.)
FOCUSSING (27) We looked at a method for making [an}...

inference....

META-CO!MMENT (28) I can't remember what it is.

Figure 7 summarizes the derived strategy for S5.
55

READING
FOCUSSING
FETA-COMMENT
FOCUSSING*
META-COMMENT#*
FOCUSSING
C-RETRIEVAL*
PROBING*
FOCUSSING
META-COMMENT

Figure 7.
The structure of this segment of S5's protocol also is in good agreement with

the theory. Focussing, meta-commenting, retrieval, and probing are indicated
to occur on subsequent lines of protocol by an asterisk following the category

-107-

names in the derived model of strategies. In this segment the Subject reads
and focusses as an aid to retrieval, and continually probes what is retrieved.

The major difference between 59 and 0% in this segment is that 58 has an
internalized model of recursion which has been indexed (presumably by a key
phrase, such as 'a method for making an inference keep on happening) and
instantiated, while SY is left ‘'focussing'. The differences throughout the
remainder of the two protocols are much more pronounced. $3's protocol
indicates predictive understanding and a workable solution before the problem
statement has been entirely read. 35 never really succeeds in understanding
what the problem is, and all efforts at 'imitating' the solution indicated in
the first sentence of the problem statement come to grief.

There are also counterexamples to the theory. Here is an extract from the
first segment of protocol of C11:
(PROTOCOL, SEGHENT-1, S11)
READING (1) "On page 80 of Units three to four...."
META-COMHENT (2) And then I looked at that apgain becuuse I
immediately tried to think of what page eighty might

be like, and Units three to four.

META-COMMENT (3) I couldn't remember.

READING (4) "....we looked at a method for making a
particular inference 'keep on happening.”

META-COMNERT (6) As I was reading tﬁat 1 started to think....

META-COMMENT " (7) About what I had read....

META-COMMENT (¢) And it rang a few bells, but....

META-COMMENT (9) I wasn't very clear about it.

META-CONMMENT (11) The procedure you need for thet, so I decide to

carry on reading.
Here is the structure of the derived strategy:
11

READING _
META-COMMENT*
READING
META-COMMENT*

Essentially, this Subject is reporting that some of the words and phrases are
recognizable - method, inference, 'keep on happening' - but the corresponding
structures in memory are not activated. Each segment of the reading protocol
for this Subject looks much the same as the segment provided here.

5) CONCLUSION

We believe that there is a useful distinction between two types of novice -
those we have called talented, and the rest. We have studied 6 novices in
considerable detail, and find that a talented novice is like an expert in many
respects in which the average novice is quite unlike the expert. A cood

-108-

example is the behavior of novices on the transcription task by comparison
with an expert. These differences hold across a variety of task situations
thut we have studied, most of which have not been discussed in this puaper.

There is a preat deal more to be said about mental models, about the theory of
novice problem solving, about the interpretation theory, and about the various
experimental methods used in studying novice programming behavior, than has
been indicuated in this brief paper. We hoped simply to indicate the direction
our reseurch has taken and u very brief of some of our findings. We should
have liked to present more detail about each of these matters, for the final
picture is far from simple. For example, a talented novice may not only find
his mental models an aid to understanding, but a hindrance as well. S8, who
believed that there were only two types of program you could write in S0LC -
iteration and recursion - began working on the second problem thinking it
would be a problem in iteration because a problem in recursion had previously
been given. The preconception was mistaken, and the Subject's 'iteration
model' led the Subject astray for a considerable length of time in solving the
second problem given. Mental models are more fully discussed in Kahney &
I'isenstadt (1982). A detailed discussion of all the issues raised here can be
found in Kahney (1982).

REFERENCES

Brooks, R. Towards a theory of the cognitive processes in cormputer
programming. Int. J. Man-Machine Studies, 9, 1977.

Chi, M.T.H., Feltovich, P.J. & Glaser, R. Categorization and Representation
of Physics Problems by Experts and Novices. Cognitive Science, vol. 5, 1981.

di Sessa, A. A. The role of experience in models of the physical world.
Proceedings of the Third Annual Cognitive Science Society Conference,
Berkeley, California, 1981.

Eisenstadt, M. Artificial Intelligence Project. Units 3/4 of 'Cognitive
Psychology: a third level course.' Milton Keynes: Open University Press,
1978.

Eisenstadt, M., Laubsch, J. & Kahney, H. Creating pleasant programming
environments for cognitive science students. Proceedings of the Third Annual
Cognitive Science Society Conference, Berkeley, California, 1981.

Gentner, D. Generative Analogies of Mental Models. Proccedings of the Third
Annual Cognitive Science Society Conference, Berkeley, California, 1981.

Hayes, J.R. & Simon, H. Understanding written problem instructions. In
Gregg, L.W. (Ed.), Knowledge and Cognition. Hillsdale, N.J.: Lawrence
Erlbaum Associates, 1974.

Kahney, H. & Eisenstadt, M. Programmers' mental models of their programming
tasks: the interaction of real-world knowledge and programming knowledge.
Proceedings of the Fourth Annual Cognitive Science Society Conference, Ann
Arbor, Michigan, 1982 (in press).

Kahney, H. An in-depth study of the behavior of novice programmers. Technical
Report No. 82-9, Human Cognition Research Group, The Open University, Milton
Keynes, England, 1982.

Luger, G. & Bauer, M. Transfer effects in isomorphic problem situations. Acta
Psychologica, 1978.

-109-

liorman, D. Some observations on lental Models. CHIP Technical Report No. 112,
Center for Human Information Processing, University of California, San Diego,
California, 1982.

Reed, S.K., Ernst, G.W. & Banerji, R.B. The role of analogy in transfer
between similar problen states. Cognitive Psychology, vol. 6, 1974.

Schoenfeld, A. H. Can Heuristics be Taught? In Lockhead, J. & Clement, J.
(Eds.), Cognitive Process Instruction; Research on Teaching Thinking Skills.
The Franklin Institute Press, 1980.

-110-

-111-

Measuring the performance of students in an

introductory informatics course

R.P. van de Riet
Computer Science Department

Vrije Universiteit, Amsterdam

This paper is based on the article: Performance
Evaluation of the BASIS system by R.P. van de Riet,
published in the Proceedings of the 4th International
Symposium on Modelling and Performance Evaluation

of Computer Systems, Vienna, Austria, February 6-8
1979; North Holland Publishing Company.

-112-

Performance evaluation of BASIS

ABSTRACT

BASIS is an interactive system, based on PASCAL, for the workshop
of the introductory course in informatics. It has built-in facil-
ities for evaluating itself and the performance of the students.
The aim of the performance evaluation is to have a tool by means
of which the system and the course can be gradually improved.

1. INTRODUCTION

The BASIS system is used in the introductory course in informat-
ics as the primary tool for the student's practical work. It is
an interactive system for both program composition and program
testing. The language is a subset of PASCAL [1] (no records, no
sets, no subranges, no pointers, only one data file and no
goto's). The only way a student can make a program is by making
procedures which can be individually tested. In fact, for the
student a program is just the collection of variables and pro-
cedures he introduced. The emphasis is on structured programming
with short, well documented, procedures. The current BASIS ver-
sion checks if the procedure text conforms to a simple but ade-
guate lay-out structure and also whether the text contains any
form of comment. The editor is a large subset of the UNIX editor
[10].

In two preceding IFIP conferences we reported about the design
criteria and plans [5] and about the implementation of the systenm
[6]. 1In this paper we want to discuss several measurements which
have been carried out. These measurements concern primarily the
functioning of the system in response to the student and vice
versa. A major objective which we want to realize with the sys-
tem is that of more or less automatic upgrading. Not in the sense
that bugs are removed (actually the current version of the system
is very stable), but in the sense that reactions of the system to
student behaviour are improved.

There are several ways to measure the system-student responses in
order to make improvement possible. One method is to question the
students about the system by means of questionnaires. In an early
stage of the development of the system this has been carried out
by two psychology students on a group of alpha students (from the
humanities). Very few problems were signalled in this way which
were not already known by personal communication. In particular,
the placement of the semicolon and the use of the editor turned
out to be troublesome. This way of measuring the system was not
pursued any longer; although it is not impossible to redo such an
investigation in the future if some psychologists show interest.

Another method, which will be extensively reported in this paper,
is to automatically analyze the conversation between system and
student. In this way it turns out to be possible to get a clear
picture ‘of what an average student does, how he reacts upon er-
rors, which errors he makes, which constructs he uses, etc. and
of the behaviour of the system in terms of response time, error
messages (whether they are clumsy or not) , etc.

The structure of this paper is as follows. In section 2, we will
demonstrate a typical session of a student. In section 3, we
will show how a so-called stat-file is constructed from the
system-student conversation. In section 4, we analyze the global

Performance evaluation =113 of BASIS

behaviour of the student and we compare several types of stu-
dents: informatics and mathematics, biology and geology, and stu-
dents from the humanities. In section 5, a detailed analysis of
the errors will be given in terms of reaction time, think time,
frequency, adequacy of help information and repetition of errors.
Several correlation coefficients will be given also for the dif-
ferent groups mentioned above. 1In section 6, we will outline how
the errors, are distributed in time. 1In section 7, we will report
about the analysis which has been performed for each individual
error and how this influenced a new version of the system. In
section 8, the use of the language constructs will be described.
This analysis reflects a little bit the analysis of Knuth [4]
about use of FORTRAN constructs and the analysis of Tanenbaum [9]
concerning the use of PASCAL constructs. These investigations
were designed for optimization purposes of compilers and underly-
ing machines.

Our goal is to know what the student is doing from a pedagogical
standpoint so that the course can be improved pedagogically. 1In
this sense our investigations are in the same area as the studies
of Sime and Guest [8] where they measure the use of certain
language constructs as e.g. if-then-else versus goto's, or the
investigations of Gannon [2] who describes several controlled
experiments where programmers use (more or less) structured pro-
gramming tools. 1In section 9, we report the results of the meas-
urements concerning the system responses, together with a short
overview of past measurements by M. Kersten [3] concerning the
internal functioning of the system components. Here, we also
give some numbers concerning size and speed of the system and the
hardware configuration. Finally, in section 10 we describe some
future plans.

2. AN EXAMPLE OF A BASIS SESSION

We suppose that the student is somewhere in the middle of the
course so that he is already familiar with the notion of vari-
ables, types, values, procedures, editing, etc. He will work on a
problem where the main procedures have been thought out and writ-
ten at home. (In fact the course assistants take care that the
students do their homework at home and not behind the terminal).
The problem is to calculate the n-th Fibonacci number £[n], de-
fined as f[0] = 0, f[1] =1, f[i] = f[i-1] + f[i-2], for i > 1.
This problem is identified as exercisel. A possible interaction
is shown below. BASIS normally ends its response with an arrow "
-=>" after which the student gives a next command. If the student
types in a procedure (or function), then the BASIS reaction upon
a new line is "...", so the student can easily see if he is still
typing in the procedure or that he has finished the procedure.
In general, BASIS responds with "..." if the command is not fin-
ished. '

When the student is editing a procedure, with the name "proc", by
means of the command "edit(proc)", BASIS responds with "..>", if
a new edit command is expected; if the edit command is not ready,
as in the case of a(ppend). BASIS responds with "...".

If BASIS detects an error (syntactical or run-time) it responds

Performance evaluation -114~ of BASIS

with showing the 1line 1last treated (which can be the command
typed in or a line of a procedure) underlining the symbol last
treated. Only if the student types in "help" will BASIS respond
with "***" followed by an error message. It is possible that the
student asks for more help by typing in "help" again. In that
case BASIS responds with some global information about the error
such as a reference to the manual or some examples. Note that by
explicitly asking the student for "help" instead of automatically
providing' him or her with the error message, we have given the
system a tool to measure the student's reaction upon errors. It
is now possible to measure the effect of an error message on the
number of times the same error is repeated immediately, or on the
time a student needs before he repairs the error (i.e. think
time). Furthermore, it saves time for the student (and paper of
the terminal) since in quite a number of cases (in fact 70-80 %)
he apparently did not ask for the error information.

In BASIS, comment 1is placed between "(*" and "*)" and may be
placed in commands or in the text of a procedure. We will use L §
to explain what the student is doing.

Let us return now to the problem mentioned above. The student
starts as follows after logging in under UNIX [10].

**x* Basis-version 230178, see: 'Basis-handleiding dec 1977'
--> var f0,fl:integer;
... type far=array[l..n]Jof integer;
type far=arrayl[l..n]Jof integer;
--> help
*** arraybound must be an integral number
--> type far=array[l..10]Jof integer;
... const n=10;
«ws FEsfars
f:far;

--> help

k% "=" expected

--> help

_*** ex, const month='augustus'
x** ex, const min=10; max=20;

* %% maxint=32767

*** gee manual 4.1 (const-declaration)

--> var f:far

v.. f0:=0;£1:=1;f([2):=f0+f1;£([3):=£[2]+f]l;write(£[3]); .
2

—=> f[4):=fFf[3]+£[2];f([5]):=f[4)+£[3];write(£[5]);
5

--> procedure fibon(n:integer) ;
... var i:integer;
... begin

PR while i <= n do

ou's begin f[i]:=f[i-1]+£f[i-2] end;
... write(£f[n])

... end

--> fibon(5);
*** remember: layout not correct, see: additions to the manual
*** remember: pr- or fu-declaration without comment

i w2

e o o

-

"
-=>
-—>

Performance evaluation -115-

*** jn: fibon

4 while i<=n do
n = 5
i = <undef>

edit (fibon)

1 A

procedure fibon(n:integer);

a

(*computes and prints n-th fibonacci number¥*)

/begin £/

begin f[i]:= f[i-1]+f[i-2] end;
s/end;/;i:=i+1/p

begin f[il:= £[i-11+f[i-2]; i:= i+l
a

end;

/write/
write(£[n])
s/w/ w/p
write(£f[n])
1,%p
procedure fibon(n:integer);
(*computes and prints n-th fibonacci number¥*)
var i:integer;
begin
while i<=n do
begin f[il:= £[i-1]+f[i-2]; 1i:= i+l
end;
write(f[nl])
end

q
(*We are out of the editor now*)

fibon(5);

*%** jpn: fibon

5 while 1i<=n do
n = 5

i = <undef>
help

variable did not get a value

edit (fibon)

/begin/

begin

s/n/n i:=2; f[0]:= fO;f[1]1:=£f1;/p
begin i:= 2; £[0]:= £0; £[1l}:= fl;

q

fibon (5)

**x jn: fibon

4 begin i:= 2; £[0]:= £0; f[1l]:= £1;

n = 5

of BASIS

-116-
Performance evaluation) 4 of BASIS

i = 2

--> list(type)

type far = array [1..10] of integer;
--> type far = array[0..10] of integer;

type far = array[0..10] of integer;
-=> help

*** new identifier expected
--> erase(far)
--> type far = array[0..10]of integer;
... var f:far;
... fibon(5)
5
-—=> fibon(7)
13
-=> fibon(10)
55
-=> fibon(15)
*** jn: fibon
6 begin f[i]:= f[i-1]+£f[i-2]; i:= i+l

15
11

n
i

--> help
*** index of array bound too large
Here we skip over the session until the student has made a pro-
cedure which produces the fibonacci numbers as real numbers in-
stead of integers.
... fibon(10)
55.0
--> fibon (20)
©765.0
--> fibon (40)
1.0233e8
==> fibon(100)
3.5423e20
--> (*this computation needed 130 real seconds¥)
-—> save;
-—> stop
cptime: 28.42 sec.
*** end of basissession

3. THE STAT-FILE

From the conversation, as shown in the preceding section, a file
is constructed provided with some extra information consisting of
real time and cpu-time used, which is called stat-file and which
is used for gathering the statistics. Obviously, it is not neces-
sary to put on the stat-file most of the system responses as
"-->", full error messages and results of computations. Instead,
only the error numbers are shown. Furthermore, in order to sim-
plify the analysis of the stat— file the beginning of a procedure

Performance evaluation _117- of BASIS

declaration 1is signalled by a "p" and the beginning of an edit
session by an "e". The two numbers with which most of the lines
start are real time, measured in seconds and cpu-time measured in
20 milliseconds. These numbers are produced at the moment that
the line on which they occur is sent from the BASIS system to
UNIX to be put on the file. For an input line this is the moment
that all the characters are put in a buffer just prior to pro-
cessing the line. For an output line it is the moment that all
processing is done and the line is shown on the terminal.

The stat-file of the preceding section has the following form.
03966 26029 login

00032 00046 var f0,fl:integer;

00072 00049 type far=arrayl[l..n]Jof integer;

#2103

00072 00050 -

00076 00051 help

00103 00054 type far=array[l..l0]of integer;

00123 00059 const n=10;

00214 00060 f:far;

#2003

00214 00060

00218 00061 help

00225 00066 help

00276 00070 var f:far

00347 00071 f0:=0;fl:=1;f[2):=f0+f1l;£[3]:=£[2]+£f1;write(£[3]);
00398 00078 f£[4]:=f(3]1+f[2);f[5):=£[4]+£[3];write(£[5]);

00418 00086 procedure fibon(n:integer);

P

00427 00090 var i:integer;

00432 00092 begin

00445 00093 while 1 <= n do

00490 00095 begin f[il:=f[i-1]+f[i-2] end;
00499 00099 write(£f[n])

00503 00101 end

1

00518 00101 fibon(5);

#4204

00518 00111

00554 00114 edit(fibon)

e

00558 00116 1

00563 00117 a

00595 00117 (*computes and prints n-th fibonacci number¥*)
00601 00121 . ‘
00612 00121 /begin f/

00630 00130 s/end;/; i:= it+l/p

00640 00144 a

00652 00144 end;

00653 00145 .

00660 00145 /write/

00695 00149 s/w/ w/p

00707 00154 1,$p

00723 00164 g

!

00750 00165 (*We are out of the editor now¥*)
00764 00163 fibon(5);

Performance evaluation -118~ of BASIS

#4204

00764 00174

00777 00179 help .

00793 00190 edit(fibon)

e

00799 00193 /begin/

00818 00200 s/n/n i:=2; f[0]:= f0;£f[1l]:=£f1;/p
00824 00204 ¢g

|

01098 00298 fibon(5)

#4002

01098 00305

01127 00310 list(type)

01159 00313 type far = array[0..10] of integer;
#2107

01159 00314 ‘

01163 00314 help

01190 00320 erase(far)

01209 00321 type far = array(0..10]of integer;
01216 00323 var f:far;

01327 00364 fibon(5)

01339 00385 fibon(7)

01357 00408 fibon(10)

01365 00440 fibon(1l5)

#4003

01371 00466

01379 00472 help

02766 00964 fibon(10)

02775 00987 fibon(20)

02783 01038 fibon(40)

02803 01143 fibon(100)

02971 01400 (*this computation needed 130 real seconds¥)
02980 01403 save;

02986 01418 stop

Next follows a list of the keywords and their frequencies as used
by the student in procedures. Note that the reproduction of the
session here is not complete.

02986 01419 integer2

02986 01419 end2

02986 01420 begin2

02986 01420 varl

02986 01420 whilel .
02986 01421 dol

!

4., GLOBAL BEHAVIOUR OF THE STUDENTS

For three courses, one for biology students (biol), one for
mathematics students (math) (which includes informatics students)
and one for humanities students (human), with 22, 51 and 12 par-
ticipants, respectively, we analyzed the stat-files from which
the following global conclusions can be drawn as depicted in
table 1. The table gives numbers for the average student of the
three different groups.

Per formance evaluation -119- of BASIS

Biol Math Human

- Total time connected with BASIS (in hours) 31 22.5 12
- Time spent while editing (in %) 24 28 13
- Time spent while typing procedures (in %) 11 L7 13
- Time spent while typing commands (in %) 33 30 29

(this includes procedure calls)

- Time spent while thinking about an error (in %) 23 21
- Time spent for chatting, coffee drinking etc. 9 4
(in %)

- Usage of cpu (in hours) 0.74 0.58 0.06
- Number of commands including procedure calls 1404 994 476
- Number of edit calls 186 165 46
- Average number of lines per edit call 3 8 7
- Number of procedures declared 64 36 40
- Average number of lines per procedure 7 12 6
- Number of errors made 447 290 178
- Average time needed before reacting after 59 58 66

an error was made (in sec)

-~ Number of times the same error was immediate- 28 25 25
ly made again without asking for help (in %)

- Number of times "help" was called after an 23 20 29
. error was made (in %)

- Average time that elapsed after an error was 36 14 28
made and before "help" was called (in sec)

- Number of times the same error was immediately 18 12 18
made again after asking for "help"

- Number of times "help" was called two times after 3 6 5
an error was made (in %)

- .Average time that elapsed after an error was made 107 153 124
and before "help" was called for the second time
(in sec)

- Number of times the same error was immediately 16 16 19
repeated after asking two times for "help" (in %)

table 1. Global behaviour of students

-120-
Parformance evaluation of BASIS

One can make the following conclusions from the table 1 above:

1. Mathematics students seem to work most intensively.

2. There is almost no time spent for problem solving; the time
is spent for program development, as it should be.

3. Asking one time for "help" seems to help really as the
number of repeated errors is smaller with than without
llhelpll .

4. This ,cannot be said for "help-help".

5. A mathematics student spends about 0.023 cpu hours per real
hour, which means that, as far as the cpu 1is concerned, 30
students can simultaneously be connected without problems.

6. The number of errors made per hour seems to be constant: 15.

7. The number of errors made per command seems to be constant:

0.3. '

Comparing the humanities students with the biology and mathemat-
ics students is not fair for the simple reason that the contents,
the exercises and the size of the humanities course differed con-
siderably from the biology and mathematics course. One can get
an idea of the amount of work done in the workshop by considering
that the biology students had to do 3 a-, 4 b- and 2 c- exercises
while the mathematics students did 4 b- and 4 to 5 c-exercises.
An a-exercise is very simple such as a procedure which prints the
truth table of the operators "and" and "or". A b-exercise is more
difficult, for example, a procedure computing a frequency table
of letters occurring on an input file. A c-exercise is rathefr
complicated as e.g. tic-tac-toe, simulation of Conway's game of
life. The exercises for the humanities students were specially
chosen from linguistics, such as text manipulation, e.g., count-
ing letters, Jjustifying text, coding and decoding text and gen-
erating text by means of syntactic rules.

5. ANALYSIS OF THE ERRORS

For each error, the attributes, as listed in table 2a, were
measured for the three courses mentioned:

- n: frequency;

- h: the number of times "help" was called;

- w: the total time elapsed after the error occurred and
until a "help" was called; it is called "1- help" wait
time;

- hh: the number of times "help" was called twice in suc-
cession;

- ww: the total time elapsed after the error occurred and
until the second "help" was called; it 1is called "2-
help" wait time;

- e: the number of times the same error was immediately
made again alled; after one "help" was called;

- ee: the number of times the same error was immediately
made again after two "helps"s were called;

- r: the number of times the same error was immediately
made again while neither "help" nor "help help" were

called;
- t: the total time elapsed after the error occurred and
until any reaction other than "help" or "list" was

typed in; this time is called the think time.

table 2a. The total attributes.

Performance evaluation -121- of BASIS

From the above attributes concerning total/absolute quantities,
we derived the following attributes describing relative quanti-
ties:

- mt: mean think time = t/n;

- mh: mean number of "help"s = h/n;

- mhh: mean number of "help - help" per one "help" = hh/h;

- me: _mean number of repeated errors after "help" = e/h;

- mee: mean number of repeated errors after "help - help" =

ee/hh;

- mr: mean number of repeated errors after neither "help" nor
"help - help"; mr = r/(n-h-hh);

- mw: mean "l-help" wait time = w/h;

- mww: mean "2-help" wait time = ww/hh;

table 2b. The relative attributes.

The errors were sorted according to the above attributes, so that
we obtained 17 lists of error numbers. It takes too much space
to reproduce these lists here since each list contains 170 error
numbers. We first give a few interesting examples and then we
will describe the results after comparing these lists.

5.1. Some examples

In order of frequency, n, the 10 most frequently occurring errors
were almost the same for the three courses: biology, mathematics
and humanities; we therefore 1list the results of the biology
course:

identifier not declared (typing error)
syntax error

erroneous symbol (typing error)
command expected (typing error)

error in editor with text replacement
existing identifier expected (typing error)
(as e.g. in list or edit)

variable did not get a value

editor reaches end of text too early

after editcommand no new line

error in string matching in editor
These 10 errors were responsible for 56% of all errors; four of
them probably are typing errors, four are errors in the editor
(which means that working with the editor is still not simple
although we changed from an own-invented (clumsy) editor to the
very handy UNIX editor) and two are more fundamental errors: one
concerning syntax and one concerning semantics.

Errors which need the most time to think before a repairing ac-
tion are the most important ones. They need considerable atten-
tion from the person who gives the lectures as well as from the
makers of the system.
In the ordering of total think time, t, the first 10 errors for
the biology students were:

variable did not get a value

Performance evaluation -122- of BASIS

identifier not declaced

syntax error

command expectead

identifier not declared

"," or ")" expected after expression

too much cpu-time used

existing identifier expected

erroneous symbol

insufficient room left for array declaration
The mathematics students showed a somewhat similar behaviour;
only three of the errors differed. The humanities students
showed a more different behaviour, with four errors differing.

‘The reason that "identifier not declared" is showing up in the
above lists is that it occurs so frequently, but it 1is, of
course, a very common error. The most interesting errors are
those which need the most mean think time, mt. The attribute
mean think time is of interest as it says something about "diffi-
cultness".
The ten most "difficult" errors, then, for the biologists were:
insufficient room for array declaration
too much cpu-time used
divison by zero
array identifier expected
"(" or identifier expected (in a command of the form "a:=
...", where a is an array variable and "..." can be some=
thing like "(1,2,3)" or "b")
type identifier expacted
(in "var a: ...")
index of one-dimensional array too small
erroneous use of standard procedure identifier
\ (as in "procedure sin(x,y:real)"”
overflow of real capacity
first index of two-dimensional array too small

The frequencies of these errors range from 3 to 57, which on a
total of about 10000 errors is of course very small. The think
times range from 6 to 2.6 minutes.

According to the mathematics students the following ten errors
were most "difficult":
too much cpu-time used
index of one-dimensional array too small :
insufficient room for local array declaration
too much nested procedure calls (max = 50)
(problems with recursive procedures)
array identifier of same type expected
array-bound must be an integer
("type ar = array [l..n] of real" is not allowed)
second index of array is too large
array index must be an integer expression
type of function must be standard
not implemented (probably an error of the kind: "a[l]:= b[1]"
occurring 1in a procedure where a and b are two-dimensional
array variables. This construction is allowed as a command,
but as it is non-PASCAL, w= have Fforbidden it in a

Performance evaluation =125~ of BASIS

orocedure)

It is remarkable that 7 of these errors concern arrays. They were
not made often; their frequencies range from 134 to 9 (which 1is
not much compared with the total number of about 15000 errors)
and their mean think times range from 10 to 2.3 minutes. With
respect to the humanities students we remark that their ten most
"difficult" errors differed completely from the above two lists,
which is not surprising.

5.2. Some correlations

It is tempting to compare all the sorted lists of errors; the
question is, however, how can they be compared? Heuristically,
the most direct way 1is the way we suggested in the preceding
section. Compare the first N items of two sorted 1lists. If the
intersection consists of d elements, then d/N is a measure for
correspondence. This number is called the correspondence number
c(N) and 1is obviously dependent on N. If N is chosen to be 1,
then c(N) is either 0 or 0.5; if N is chosen equal to the number
of different errors (170 in our case), then c(N) = 1. We have
computed c(N) for N = 10 and N = 20.

For the mathematics students we found the following correspon-
dence numbers in the form of pairs c¢(10), <c¢(20): (for obvious
reasons we donot compare total attributes and relative attributes
with each other).

bh 1“.3; +5}t.7, «6{.5, .71, 1] -ww

wiv 1wy 5615, a5)8 oF |k of -} Ly - & e

D
w
-
.
[9%]
.
(e @)
-
~J
(o))
-
(2]
~J
-
w

ee | .4, .3].6, .6|.4, .4|.5, .6

ri{.8, «9{.3, .4|.6, 6.3, .5

.
>

~
N
w

~

.41.4, .4 1, 1

t!{ .6, .70.7, .71.7, .8|.6, .6].5, .7|.7, .5|.5, .5}.5, .7

table 3. Correspondence nuabers for total attributes.

The conclusion from table 3 might be that there is in general a
rather high correspondence between all the total attributes, but
in particular between n and r, w and h, hh and h, e and h, t and
w. This conclusion 1is reinforced by a computation of Pearson's
correlation coefficients. (not reproduced here).

The correspondence numbers for thes relative attributes are given
in table 4.

-124-

Performance evaluation of BASIS
ot
mt Loy mn

mh 0, «2f L, 1 mw

mww,.! «3, <21 04 0)s5, 6 1, 1 mhh
mhh { .2, .4{.2, .5{0, .1{0, .1}1, 1 me
me | .3, .3}|.1, .1}.1, .1{.1, .1}0, .21, 1 mee

mee o, .1/o0, .1}.1, .2¢.1, .10, .2 el y: «l 1, 1

mel o, olo, ol.2, .2].1, .20 .1 .1f.1, 1] .1, .1

table 4. Correspondence numbers for relative attributes.

The conclusion from this table is that not so much can be said:
there seems to be a low correspondence between all of the rela-
tive attributes. The high correspondence among the total attri-
butes is probably due to the fact that frequencies of the first
errors of these lists are very high, whereas the frequencies of
the first errors of the relative attribute lists are an order of
magnitude smaller, so that stochastic effects on the order is
much stronger. The only correspondences which can be noted are
between mww and mw, which is not very surprising, and between mhh
and mh.

The faint correspondence between mt on the one hand side and mww,
mhh and me is notified.

Comparing two lists of 170 errors by counting how many errors
appear to be common to the first N (N = 10 and N = 20 above) 1is
of course very arbitrary. We could have taken the last N errors
of the lists equally well.

Therefore, we also have worked out the following experiment.
Compare the two lists by looking whether the i-th element of the
first 1list occurs on one of the places i-d, i-d+1, ... ; 1+d=1,
i+d in the second list. Such an element is called an OK element.
A correspondence number can then be defined as the quotient of
the number of OK elements over the total number of elements.

For d = 10 we give here a list of 10 pairs of attributes which
have the highest correspondence number:

mee—-ee (70%) tt-h (51%)
hh- ww (58%) tt-w (51%)
tt- n (57%) me-e (51%)
h - w (56%) r —e (50%)
mww—ww (56%) ee—e (49%)

The lowest correspondence numbers are between mee and mt (11%)
and between mee and mh (13%). The highest correspondence numbers
batween relative attributes are for mhh and mww (40%) and mee and
me (41%).

Performance @avaluation ~125- of BASIS

It i3 noteworthy that mt as attribute does not corraspond well
with any other relative attribute except maybe with mh (30%) and
mw (23%). By means of Pearson's correlation coefficients, anoth-
er correspondence between the relative attributes has been com-
puted and the results are shown in table 5.

mt

mt - mh

mh :3 1 mnw

mw .4 0 1] mww
mww .11-0.2 - 1| mhh

mhh|-0.1 0 e 0 1 me

me 0 L Lo T Y O e B O 1 mee

mee |-0.1 oIl 21 ~0.2]~0.3 o2 1| mr
mr{-0.1] .1 0/-0.1] 0.1 0 0.3 1 |

table 5. Pearson's correlation coefficients for relative
attributes.

The positive correspondence between the mean think time (mt) on
the one hand and mean number of "help" calls (mh) and mean "1-
help" wait time (mw) on the other hand is interesting, although
it 1is not evident that these attributes are really correlated.
The observation that mee and mhh seem to be negatively correlated
leads to the 1interesting conclusion that the more one does
"help-help", the less one makes the same error again. That this
conclusion, which certainly is a conclusion with which we would
be very happy, should not be drawn too hastily, follows from the
fact that a similar conclusion can not be drawn with respect to
"help" (the correlation between me and mh even seems to be posi-
tive) . The same correlation coefficient for the biology course,
which was held earlier than the mathematics course, had the value
+0.2. After this course was held the error messages for "help-
help" were changed, this can be the reason of the negative corre-
lation coefficient, discussed here. .
The positive correlation coefficient between mr (mean number of
repeated errors without "help") and mee (mean number of repeated
errors after "help-help") is notified.

6. THE DISTRIBUTION OF THE ERRORS IN TIME

From Kersten's [3] analysis we give a small account of the
analysis of how the errors were distributed in time. Table 6
shows the percentages for six very frequently occurring errors
during the three weeks of the course.

-126-

Per formance evaluation of BASIS

wealk 1 week 2 week 3
identifier not declared 15.5 11.5 10.2
syntax error 7.6 9.2 £:59
command expected 4.7 453 4.2
existing identifier expected 4.4 3.8 5.2
variable did not get a value L 4.3 7.6
error in editor 2.9 3.6 543

table 6. Time distribution of most frequent errors.

One can see that simple errors as "identifier not declared" are
made less and complicated errors as "variable did not get a
value" are made more as the course is going on.

7. ANALYSIS -OF EACH INDIVIDUAL ERROR

With the error frequencies of the biology course we have analyzed
each error individually with respect to: adequacy of error mes-—
sage and clarity of the location when the error occurred, and
this with the relative importance of the error in mind. For about
20 errors this resulted in a better message and for three errors
this resulted in reprogramming the pertinent piece of the system.
Noteworthy is the error: "type of operands unequal” which occurs
for example in "if i<10 and 1<i", where "10 and 1" is wrongly
treated as a term; the reason for this was that we had a large
table for all the operators and a three- dimensional "jump" such
that knowing the types of the operands and the operator immedi=
ately 1led to the table entry where the definition of the opera-
tion was defined. We now have dropped this very clever scheme in
favour of working out all cases with if-then-else and case-
statements with the effect that errors can be better localized;
as a side-effect it turned out that the new scheme was faster and
needed fewer bytes.

It has been investigated also why about 30 errors did not show up
in the statistics, although the system could produce them (by the
way, there were 14 errors which occurred just once of the total
number of 14800). The conclusion was that in principle they all
can (and hence will) occur some time. Some constructs which are
possible in BASIS are used very seldom, such as giving through
procedure identifiers or call-by- reference parameters to other
procedures. There is also a double syntax check: one 1is rather
crude and concerns bracket structure, the other is precise. For

example, the first check does not signal an error in "if 0<x«<1
then ...", it sees that "then" has a preceding "if". The second
check reads "0<x" as an expression and the next symbol to Dbe
treated is "<" so that an error is signalled saying that "then"

is expected.
8. FREQUENCIES OF KEYWORDS

In order to observe what the students are doing and which con-
structs they are using we have counted their use of keywords as

"begin", "if", etc., using the stat file. This has been per-
formed, for several exercises, with the hope that per exercise
the behaviour of the students is a little bit uniform. for the

whole course it 1is very difficult to draw any conclusion about

Per formance evaluation 2197 of BASIS

the usage of keywords. Martin Kersten has performed such an
analysis and could only draw conclusions like:
- "and" and "or" are used much more frequently than that
boolean variables are being declared;
- "then" is used about twice as often as "else";
- thi use of "for", "repeat" and "while" is proportional to
gslal.
This topic will be dealt with more extensively in a future paper.

9. THE INTERNAL FUNCTIONING OF THE SYSTEM

9.1. The internal structure and representation

In order to get an idea of the functioning of the system and
thereby on the kind of measurements which have been carried out,
we give the following global picture of the system and the inter-
nal representation.

The system is completely written in PASCAL.

The text of each BASIS procedure (i.e. typed in by the student)
is kept in memory as a linear list of text cells. Bach text cell
contains a syntactic unit, such as an identifier or a keyword in
which case a pointer in the text cell points to the character
string constituting the identifier or keyword in the symbol
table, or a number, in which case a pointer points to a record in
the number table, containing the character string (for editorial
reasons "123.456" is different from "1.23456e2") and the value;
or the text cell contains a character like ";" or "=" or an end-
of-line symbol, in which case backward and forward pointers sim-
plify the process of stepping line-by-line through a text.

There is also an information store in which the information (type
and for variables: value and for procedures: text pointer) about
all identifiers is stored. There are pointers from the symbol
table to this information store in order to find the appropriate
information corresponding to an identifier occurring in the text.
By a careful analysis of the frequencies of the records we were
able to redesign the internal representation in such a way that
the amount of memory needed for a certain program was diminished
by a factor of about 2.5. Which means that a program can now have
a size of some eight pages in the available space, which is more
than enough for a basic course. For example, a text cell consist-
ed in the previous system of 10 to 12 bytes, in the current sys-
tem it consists of 4 (normal) to 10 (only for end-of-line cells)
bytes. In the previous system we encountered the problem that the
PASCAL system maintains 6 free lists of records which may be
reused. The new system is provided with one record type: cell
with 35 (nested) variants and the BASIS system itself maintains
lists of free cells structured on size.

Another redesign concerned the symbol table. 1In the previous sys-
tem it was organized as a binary tree upon initialization pre-
filled with the keywords. It turned out that on the average 6
comparisons were necessary to insert or look after an identifier
or key word. The storage structure of the current system is that
of a hash table of moderate size of 248 bytes. The average number
of comparisons now is 1l.1l.

‘The system code amounts to 155 PASCAL procedures totaling 3300
lines, having been thoroughly analyzed and judiciously rewritten

Per formanca evaluation -128- of BASIS

based on an analysis using counters and timing statistics of Mar-
tin Kersten [3]. The result was that the current system is about
a factor 1.5 faster than the old one. We plan to describe the
internal functioning of the system and the changes we made in
more detail in another paper.

9.2. The hard- and software configuration

The hardware configuration consists of:
PDP 11/45 with 124 K words
cache memory (speed improvement about 40%)
floating—-point processor
2 RKO5 disks (2*2.5 M bytes)
1 fixed head disk (0.5 M bytes)
2 Ampex disks (2*32 M bytes)
Lineprinter + paper tape reader/punch
2 DEC Tape Units
30 Terminals
1 fast multiplexor for connection to a remote Cyber 73.

As software, the UNIX operating system [10] is in use; this is a
time-sharing system allowing processes to share common files.
The PASCAL compiler used for the BASIS system is home-made. It
produces code in a very compact form, which is executed by in-
terpretation loosing about a factor eight in speed as compared to
assembly code. The code for the BASIS system takes 26 K bytes
and there are 18.5 K bytes necessary for 1library, tables and
buffers. The system is itself also interpreting, so executing a
procedure in BASIS is a time- consuming process. For example, an
empty for statement of 100 repetitions takes 0.17 cpu sec and a
while-statement 1.8 cpu sec. From the measurements in the next
section we will see that executing procedures is done in only 9%
of the total time, so the slowness is certainly not prohibitive.
It is rather awkward, however, to see a student waiting for a
long time while the system is executing his procedure, in partic-
ular at the end of the course. Therefore, a new system is under
development, which combines the existing UNIX editor and PASCAL
compiler to realize a more rapid BASIS system.

With regard to the PASCAL system we remark that a new system is
almost ready in which the compiler itself takes 14 K bytes only.
This system can be used to produce optimized short code or optim-
ized assembly code. The ratios for speed and storage space of

short code versus assembly code are roughly the same: four. The
BASIS system compiled to assembly-code needs about 50 K bytes and
runs two to three times faster than the current system. This

BASIS system will be used during the next course so that actual
measurements can detect improvements.

9.3. The response time of the system

Using the stat files it is possible to measure some interesting
response times. In a typical conversation there are certain times
which are of interest. They are shown in fig. 1.

Performance evaluation -129- of BASIS
tl &2 t3 td4=tll tl2 tl3 tld=...
+ + + + + + +

fig. 1 Events during a conversation.

The times are defined as follows:

tl, tll: student starts typing a line of text;

t2, tl2: student sends line to the system;

t3, tl3: BASIS has seen the line and sends the line, provided
with current real time and current cpu-time, to the
stat file;

t4=t1ll, tl4: the computation as specified by the line 1is per-
formed and the reaction of BASIS is sent to the ter-
minal, whereupon the student can start thinking
and/or typing a new line thereby repeating the cycle.
If the system reports an error this is put, together
with the current times, on the stat file.

Evidently, the time t4-t2 is the response time which we want to

measure as a function of the number of other simultaneous users

of the system.

The following experiments have been carried out.

First, we asked n BASIS users to edit only, typing a line now and

then. For n running from 0 to 18 this had no effect on the

response time of the (n+l)-st user.

Second, we asked n BASIS users to use the system heavily by exe=

cuting an infinite loop,. again for n=0, ... ,18. .The ; effect oh

the response time of the (n+l)-st user was measured as follows.

The (n+l)-st user was executing a procedure which used about 1

cpu second. The real time was measured this procedure needed to

get ready. This was done by computing t13-t3 and neglecting

t12-t1l1 (using the UNIX facility to type one line ahead). The

results can reasonably accurately be described by the formula:
ro=l 157 {ntl),

where r is the ratio of real time and cpu time.

The ideal formula would have been r = n+l; the factor 1.7 is

caused by swapping overhead.

The response time for Jjust typing in a new line could not be

measured by means of the stat file, since - in t3-t2 an unre-
gistered amount of time elapsed before BASIS turns attention to
the user. This time, delta, could be measured by simply using a
stopwatch. It is given in the following formula:

delta = 0.2 (n+l) sec. :
It is of course also interesting to see from the stat files ho
long a student really waited in the course for the execution of
procedures. Therefore, we computed t4-t2 from t4-t2 = (tl3-t3) -
(tl2-tll) assuming that t13-tl2=t2-t2.
The time t12-tll, i.e. think time plus type time, was estimated
using cases were the procedure call lead to a syntax error.
The following conclusions could be drawn; they are given in table
8.

Per formance evaluation o of BASIS

weekl week2 week3 total
total real time waiting for 8 15 129 152
computation (in min)

percentage of real time waiting 1 5 14 9
for computation compared to
total time connected (in %)

total cpu time for procedure 1.7 2.6 15 19.3
computation (in min)

percentage of cpu time needed for 50 55 63 62
procedure calls compared to total
cpu time used (in $)

ratio of real time waiting for 4.7 5.8 8.6 7.9
computation and the cpu time used
for it

table 8. Response- and waiting times for procedure calls.

The conclusion from table 8 is that during the third week of the
course on the average 2.25 students of the 15 simultaneous stu-
dents were using the system heavily. This would result in a ratio
of 3.8 for real time over cpu time a procedure call needs. The
actual observed ratio was 8.9. An explanation for the difference
is that firstly the students which are editing are using the sys-

tem more heavily than in the experiment above. Secondly, while
the course was going on an unknown number of other people were
using UNIX. So the actual ratio of 8.9 is quite reasonable.

10. FUTURE PLANS

As has been said already in section 9.2, a new BASIS system which
is built around the existing editor and existing compiler is
under development

Another plan is to direct the measurements on the individual
behaviour of the student: is he making too much errors so that he
needs help, 1is he using strange constructs. This is, however,
quite complicated since it is then necessary to know the
behaviour of a "normal" student. At the moment we only save his
last ten errrors in order to be able to give him a message when
he makes the same error more than two times in a certain time
period. ”

ACKNOWLEDGEMENT

The author is very grateful to Ruud Wiggers, for doing all the
programming and the measurements and to his student Martin Ker-
sten for numerous ideas and critical remarks. Furthermore, he
thanks Anthony I. Wasserman, University of California, San Fran-
cisco, and temporarily guest of the vakgroep informatica, for
numerous remarks concerning the text of this paper.

LITERATURE

Per formance evaluation -131- of BASIC

(1] K. Jensen, N. Wirth, PASCAL User Manual and Report, Lec-—
ture Notes in Computer Science, Springer, 1974.

[2] John D. Gannon, Language Design to Ennance Program Relia-
bility, Technical Report CSRG-47, January 1975, Computer
Systems Research Group, University of Toronto. Also avail-

able. in SIGPLAN Notices 10,6.

[3] M. Kersten, An Evaluation of the BASIS System, Informati-
ca Report IR-21, Wiskundig Seminarium, Vrije Universiteit,
Amsterdam, 1977.

(4] Donald E. Knuth, An Empirical Study of FORTRAN Programs,

Software - Practice & Experience, Vol 1, No. 2 (1977) pp
105-134.
[5] R.P. van de Riet, Some Criteria for Elementary Program-

ming Languages, in Computers in Education, O. Lecarme and
R.W. Lewis (Eds), IFIP, North Holland Publishing Company

1975, pp 953-963.

[6] R.P. van de Riet, BASIS - an Interactive System for the
Introductory Course in Informatics, Information Processing
77, Proceedings of IFIP Congress 77, North Holland Publish-

ing Company, 1977, pp 347-351.

(71 R.P. van de Riet, R. Wiggers, The Implementation of
BASIS, Report IR 13, Wiskundig Seminarium, Vrije Universi-
teit, Amsterdam, 1976.

(8] M.E. Sime, T.R.G. Green, D.J. Guest, Psychological
Evaluation of Two conditional Constructs used in Computer
Languages, Int. J. Man-Machine Studies (1973) 5, PP

105113,

[9] A.S. Tanenbaum, Implications of Structured Programming
for Machine Architecture, Ccommunications of the ACM, Vol

21, No. 3, (March 1978), pp 237-246.

[10] K. Thompson, D.M. Ritchie, The UNIX Time-Sharing System,
Ccommunications of the ACM, vol 17, No. 7, (July 1974), pp

365-3273,

-132-

-133-

Walter Volpert/Reinhard Frommann ¥

A\

Software assesment from the viewpoint of the psychology of

action

The research on "human factor of computing" should not be
reduced to the mere problem of increasing efficiency. The
individual and social effects of information technology are
pointing to the question whether the essential aspects of
human thinking and action are considered in man-computer-
interaction.

If this has to be denied, the attention must be focused to
the question how information technology affects human thinking
and action, e.g. taking away its independence and creative
power.

Some important aspects of this subject will be discussed.

-134-

1982 June

-135- X

PROGRAM DEVELOPMENT STUDIES BASED ON DIARIES
Peter Naur

Copenhagen University
Aol Simuloder = FEATRAV

7@4&@ 0 me*waz
\VTEL-

P W JN“""S- l
onelo waffc wo e
o “b%fs Q"L‘ froj‘,m

na MS'
Abstract

The notion of program diaries used as basis for studies of
program development processes is introduced. As illustration a par-
ticular program development is discussed. The study yields results
related to the use of formalization in problem analysis and to errors
in programming. It is suggested that a form of problem analysis that
requires every part of the program to be explicitly justified may
lead to error-free program design.

1. Introduction

The purpose of the present notes is to discuss the use of
diary notes for illuminating the problems of program development.
By diary notes will be understood here notes describing problems
considered and solved in the course of the development of programs,
taken day by day as part of the development process itself. The
aspect of such notes considered here is their recording of what
actually goes on in the programmer's mind during programming, in
the sense of what the programmer perceives to be the task to be done
and the problems and their solution. Upon subsequent analysis, diary
notes may contribute to an understanding of the problems of program-
ming, and to developing effective programming techniques. For earlier
experiments in this direction see Naur (1972) and Naur (1975).

The study of programming diaries is seen here as a supplement
to other kinds of studies of the programming process, in particular
group experiments in which the behaviour of several individuals :
facing the same, constructed programming task is studied (see e.g.
Brooks, 1980). While such experiments are indispensable in ascer-
taining the general validity of relevant hypotheses, less structured,
empirical work, such as studies of diaries, seems important in finding
what hypotheses might be worth investigating for validity.

An essential feature of the diary approach, as understood here,
is that the program development reported on in the diary should be
a true performance presenting, in some of its aspects, new problems
to the programmer. This requirement is imposed so as to exclude from
consideration such descriptions of program developments that appear
to depict real events, while in reality they are for. the most part
constructed so as to give credence to a given methodology. In the
kind of diary considered here one would expect to see displayed
both unfruitful attempts and unexpected successes.

136

It must be recognized that in the requirement that the devel-
opment presents new problems to the programmer lies a deep problem
of the approach, namely to identify that which can be admitted as
new. In principle the diary should start with a complete enumeration
" of everything the programmer knows already and that might be relevant
to the problem at hand, so as to make it quite clear to what extent
the problems encountered in the development can be solved by means
of techniques that are familiar to the programmer.

A complete enumeration is clearly practically impossible. In
practice the background knowledge can only be stated to some limited
extent, while usually much of it will have to be inferred indirectly
from the description of the problems encountered and their solution.

In the present notes the approach is illustrated by only a
single instance of a diary. This happened to be available for study,
having been produced by the author for a different purpose, and thus
describes a program development as it proceeded without regard to
any subsequent analysis.

2. Programming of a well-known task

As illustration of the use of a diary in programming studies,
this section will review some results obtained in a concrete, modest
programming task. The outlines of the task are as follows:

1. Purpose of programming task: to develap and document a
simulator, expressed in Fortran, for the microcomputer INTEL 8080.
The ultimate purpose was to establish a model solution of the problem,
for use in university teaching.

2. Background of programming task: in addition to the speci-
fications of the computers and programming languages involved, of the
format of the simulator input language, and of the essential require-
ments on the simulator output, it was required that the simulator
should be designed around a table controlling the analysis and
simulated execution of the microcomputer instruction words. The
relevant programming techniques were very well known to the author
from several earlier similar program development tasks.

3. Program development: as the most unusual feature of the
development process, all substantial design considerations and
decisions were recorded as the work progressed as a typed problem
analysis report. In this manner the basis of each part of the program
was established in writing before the actual programming was done.
Within the total development three subphases can be distinguished,
although they overlap to some extent: (1) design of instruction word
analysis and central simulator actions; (2) design of control by
table; (3) design of output format.

4, Program punching, testing, and correction: the interface to
the computer executing the simulator was given as a conventional
batch-oriented operating system, with a turn-around time of the
order of 15 minutes, and with primary input from punched cards.

5. Design and verification of tests: a properly documented
test of the simulator was a vital part of the task. For testing
a series of 16 INTEL 8080 test programs was designed and their
correct execution in the simulator verified. The development of the
test programs and the testing and correction of errors of the simu-

-137-
lator itself were done hand in hand. In this manner each run with
the computer would usually include many independent test executions,
corresponding to the various test programs, thereby allowing a very
productive utilization of the batch operation mode.

From this development the diary to be studied is formed as the
collection comprising the problem analysis report, test notes,
programs, and computer output, together with a record of the time
spent on the project day by day. The magnitude of the total task
is summarized in table 1.

Table 1. Magnitude of programming task

Work phase Time spent Lines produced
Calen- Work Free Comments Pro-
dar hours text in pro- gram
days grams

1 Design of program, 2k 38.5 666 154 679

writing of problem
analysis and
program text

2 Punching, proof 2 10.6 0 0 (0]
reading

3 Writing of test notes 16 1.5 251 0 299/
and programs, doing : 5
test runs and correc-) M$A/7) {)’G /

tions of errors
Total 42 - 80.4 917 154 1048

For the purposes of the following discussion the nature of
errors found during the testing is particularly pertinent. For
this reason the outline of the testing history is given in table
2, and an overview of the corrections made in table 3.

3. Program corrections

Table 3 gives an overview of all corrections to the simulator
program and to the test programs made as a result of the program
testing. - In the following notes these corrections will be discussed,
with special attention to the psychological issues that seem rele-
vant to an understanding of them.

The most conspicuous overall feature of table > is the wide
difference in the number of corrections in the various groups.
What will be argued here is that these differences closely reflect
the author's conscious judgement of the importance of each group,
in the sense that the larger numbers of corrections are found in
groups that the author knows full well are less vitally dependent
on correctness. This rule is seen confirmed in several ways. First,
the most numerous group of corrections is 3, errors of program text
format, which is concerned purely with the appearance of the printed
program text, and which in no way influences the operation or cor-
rectness of the program. Second, the second group according to size

-138--

Table 2. Testing history

Run 1, 1980 June 4, 11.07. The Fortran compiler referred to
in the operating system was obsolete and produced large numbers of
spurious error messages.

Run 2, 1980 June 4, 16.50. Diagnostics: from Fortran compiler:
none; from loader: one undefined name (indfad, used for infad).

Run 3, 1980 June 4, 17.02. No diagnostics. Execution of one
minimal test case, T20.

Run 4, 1980 June 4, 17.18. Execution of six minimal test cases,
T21 - T26. All fail because of the same error, viz. destruction of
argument in central input conversion function.

Run S5, 1980 June 9, 11.33. Execution of seven minimal and two
productive test cases, T1-T2. Essentially correct execution. Errors
in details of output format.

Run 6, 1980 June 9, 12.57. Execution of new test case, T3,
leads to infinite loop, because of error in test data.

Run 7, 1980 June 10, 14.12. Execution of seven minimal and five
productive test cases, Tl - TS5. Everything worked correctly.

Run 8, 1980 June 11, 13.57. Execution of six new test cases,
T6 - Til; no errors found.

Run 9, 1980 June 17, 15.36. Error in operating system control
instruction.

Run 10, 1980 June 17, 16.55. Execution of five new test cases,
T12 - T16. Four had trivial errors. No error in simulator found.

Run 11. 1980 June 19, 13.57. Correct execution of four corrected
test cases, T12 - T15. No errors in simulator found. Jﬁ{

L

T “Cguﬁv
Table 3. Corrections to simulator program and/ﬂést programs

Number of corrections

Test run in which
Group error was noted &1 3{/6{ 9]10] 11 [Total
1 Error of simulator logic 311 s
2 Misspelt name 1 1
3 Error of program text format 14 |1 15
4 Error of simulator output format 114 2
5 Error in test program 1|11 4 2 9

is 5, error in test program, which shows 9 corrections to the 369
lines of test program. This may be compared with the total number
of corrections to the simulator program itself, groups 1, 2, and

4, with altogether 10 corrections to 679 program lines, of which
the 5 corrections of group 4 are concerned only with the relatively
inconsequential matters of output format. It seems quite clear that
when working out the test programs the author's awareness that
errors entering at this stage would have only slight consequences
has led to a much increased error rate. Third, as already noted,

of the total number of corrections to the logic of the simulator
program, groups 1, 2, and 4, half come from the relatively unim-
portant group 4.

Considering now the core errors of the simulator program,
corresponding to the 5 corrections of groups 1 and 2 of table 3,
it is remarkable that none of them has been found later than test
run 5. As seen from table 2 this means that the work on test programs
T3 to T1i5 did not reveal any further errors in the simulator. This

foy

-139-

observation becomes still more remarkable by a closer inspection

of the details of the errors behind the five corrections. One was

a spelling error, detected by the loader as an undefined name. Three
errors were detected fortuitously by inspection of the simulator
program. Only one error was found by its influence on the execution.
Every one of these errors was a purely local slip of the pen or
mind. In other words, every part of the simulator, from the overall
plan, via the control table, to every detail of the instruction word
analysis, execution and addressing, worked perfectly according to
the design, without any modification or correction whatsoever.

In view of the general interest in program correctness and
the attention given to it in works on programming methodology, this
positive result of the present program development will be further
looked into in the following section. **n~“%¢i£;<
[4 u‘\AM"'QM‘
;‘.formu?.

4, Problem analysis work mode

As background for the analysis of the problem analysis that
led to a flawless program design, some knowledge of the underlying
author attitude may be illuminating. This attitude has, as one
important component, the view that since programming must finally
rest on the programmer's direct, intuitive understanding, the cri-
teria for the program produced being ''right'" must be based, ulti-
mately, on the programmer's looking at what he or she has done and
accepting it. From this view it follows that for helping the program-
mer in his or her task, what is important is anything that may make
the programmer retain his or her alertness in the face of the mass
of detail constituting the program, and that may make every one of
these details relevant to his or her direct understanding. The ideal
situation is one in which the programmer may take any part of the
program, look at it, and decide that it is right or wrong. Where
this ideal cannot be realized because the algorithmic means avail-
able in the programming language are too remote from the actions
that the programmer directly sees to be required for solving the
problem, the programmer will have to bridge the conceptual
distance by means of a suitable intermediate platform of concepts.
This, then, is the task to be done in the .problem analysis: the
programmer must consider each aspect of the problem in turn, and
for each decide whether it can be realized directly by programming
or whether a conceptual bridge is required, and in the latter case,
he or she must build the bridge.

As the work mode for accomplishing this task the present program
development has used a technique of problem analysis according to
to which every part of the program is developed through a conscious
process, the steps of which are recorded, as far as possible, as a
fully articulated written argumentation. In this process the devel-
opment of each part of the solution is allowed to proceed along its
own path, informal or formal, restricted only be the one basic
guiding principle, that every part of the documentation must be made
to appear such that the validity of the underlying argumentation is
intuitively obvious. As shown in table 1, in the present case this
manner of developing the program has led to the formulation of 666
lines of problem analysis text, which is roughly the same number of
lines as in the program itself. While most of these lines are informal
prose, several different kinds of formalized expression have been

-140-

Table 4. Formalizations in problem analysis

Kind of formalization Number of lines
Simple list of target machine instructions 30
Structured list of target machine instructions 60
Target machine store map 13
Arithmetic formula (address calculation, etc.) 8
Target machine word position display 3
Algorithm fragment : b
Control word. format description table 16
Case enumeration table 17
Any formalization, total 151

employed, as summarized in table 4. What is most noteworthy of this
table is the fact that so many different kinds of formalization

have been found useful. Since clearly each such kind can only be

used as a result of a deliberate consideration of the manner in which
a particular part of the solution is most effectively described,

the employment of these several kinds indicates that in the manner

in which the problem analysis is carried out the choice of

the most suitable mode of expression appears prominently.

The insistence that the problem analysis provide an intuitively
obvious justification of each part of the program implies that the
problem analysis effectively includes a proof of the validity and
correctness of the program. In the present problem no explicit .
proof of any part has been given in the problem analysis, the solu-
tion having been proven correct by construction. This fact is a
reflection of the nature of the problem. In solving other problems
the same general approach might very well lead to a need for demon-
strations that depend on such intermediate steps that are charac-
teristic of proofs. Such demonstrations can be accomodated within
the present frame of work without any difficulty.

In addition to the arguments for the correctness of the solution,
the problem analysis must include arguments that justify the choice
of each part of the solution. These arguments may be expressed in
any appropriate manner, and in particular may include discussions
of effectiveness and of alternative solutions.

More generally, the mode of work employed in the present pro-
gram development may be said to conform closely to that employed
in normal technical activity concerned with systematic development
and construction.

5. Results of the diary analysis

The diary analysis given as illustration above suggests, as
one result, that when the programmer is fully aware of the implica-
tions of errors in various parts of a project, his or her error
rate will be influenced strongly by the severity of the consequences
of errors in each part, in the sense that more errors will be made
where they matter less. This result accords well with common sense
and with experience reported earlier (Smith 1967).

~141-

As another result, a problem analysis aiming at a full justi-
fication of every program part in the most effective manner has
resulted in an analysis report written mostly in prose, but making
use of eight different kinds for formalization. This result may be
viewed as a sceptical comment on some recent work aiming at estab-
lishing a single formalized notation for program specification
(see, e.g., Liskov and Zilles, 1977).

The most striking result of the present study is the indication
of a high level of program design correctness obtained by a problem
analysis requiring a written, articulated justification of every
part of the program. This result, if generally valid, would be
highly important to practical development. It therefore suggests
further studies aiming at clarifying whether a problem analysis of
the kind considered is a feasible approach to solving at least
some of the problems of error-free program construction. Such stu-
dies should aim at finding out to what extent errors in programming
are related to the argumentation used when writing the program.

As another aspect, the further studies might attempt to yield obser-
vations related to other persons and problems. In either case the
studies might very well make use of the diary approach, and indeed,
it might be difficult to pursue them in any other way.

In conclusion it appears that several important aspects of
programming can be conveniently and effectively studied by means
of diaries, in the sense described above.

References

Brooks, R.E. 1980. Studying programmer behaviour experimentally:
the problems of proper methodology. Comm. ACM 23 (4): 207-213.

Liskov, B. and Zilles, S. 1977. An introduction to formal speci-
fications of data abstractions. In Current Trends in Programming
Methodology, Vol. 1, ed. R. T. Yeh, pp. 1 - 32. Englewood Cliffs,
New Jersey: Prentice-Hall.

Naur, P. 1972. An experiment on program construction. BIT 12 (3):
347-365.

Naur, P. 1975. What happens during program development - an experi-
ment. In Systemeering 75, ed. M. Lundeberg and J. Bubenko, pp.
269-289. Lund, Sweden: Studentlitteratur.

Smith, W.A. 1967. Nature and detection of errors in production
data collection. Proc. AFIPS 1967 Spring Joint Computer Conf.:

425-428.
Sewsvy
Peter Naur Fov'm-u&'}a}ﬁ\ Zﬁmj Ve,

Begoniavej 20
DK - 2820 Gentofte ¢ Orre oA

(== D_QQL-:SVW(-,

~

~tmlee

?qh - "\RP & $ e UFahs
objtalk

~-142-

I Llrele
T —p— \
LMN,\,,@%?
(o brs v =0k o

§\.)$JO""

Yaro¥ 57)'0/‘/

L’ hvw/uli‘e RBeva-e
’_—'_-_-——-

¢ <0V\/\[;WL‘”I~&! .
. ¥ o g
' f »‘-«//u/v lo1r o0l n

_ _—w;/"
o ar 91»01'"‘4“ g W- o

el spahing: dar alle wrohs
. V,‘quaﬁ#&

WM'VJ«A mwtllc/if?u/ ‘

s bora—as By (pﬂwztfsf)

?%M%

-143-
INSTITUT FUR INFORMATIK UNIVERSITAT
H.-D.B&cker/G.Fischer/R.Gunzenhduser STUTTGART
Instituy Hir Informentil, Azenbergatt, 12, 7000 Stitigart 1 Ammtiergelr, T
Herdweg 51
7000 Stuttgart 1

Telefon (0711) 2078 -
Telex TX 07-21703

March 16, 1982

Abstract

H.-D.B8cker / G.Fischer / R.Gunzenhduser

Project INFORM: The function of integrated information
manipulation systems (IMS) to support man-machine-commu-
nication

Goals of the project:
- Critical evaluation of current efforts to build IMSs
- Development of a requirement analysis for an IMS

- Design and implementation of a prototype for an inte-
grated knowledge-based IMS

- Empirical investigations of our prototypical IMS with
respect to user interface, user behavior, partitioning
of cognitive tasks between humans and machine, and use
of an IMS as a learning and working environment.

The application areas for an IMS considered within INFORM
are
- software engineering/software development systems

- office atomation systems.

Theoretical base:

Our project is based in Artificial Intelligence and Cog-
nitive Science Research. Representation of knowledge, un-
derstanding the cognitive capabilities of the user, design
support systems, question answering systems, support for
exploratory programming, uniformity of system behavior
across many domains are some research fields playing an im-
portant role in our work.

-144~
Abstract

Software:
The software to be implemented within the project consists
of basic tools (e.g. window systems, knowledge represenation
mechanisms) as well as application packages. The latter are
of two kinds:

1) A planning system supporting students planning their gra-
duate studies. Through the use of domain specific know-
ledge the system helps the student by pointing out conse-
gquences of decisions, and allowing the exploitation of
alternative designs;

2) A system providing assistance in setting up a finance
plan for a research project; this subtask concentrates
on the propagation of constraints and how to make them

visible to the user.

Our intention (in contrast to some work in AI) is not to bdild
fully automatic systems, but symbiotic systems between man and
machine.

I1I.

-145-

FACILITATING HUMAN-COMPUTER INTERACTIGON

A. Tools and aids

-146-

=17

COMPUTER AIDED DECISION MAKING WITH GRAPHICAL DISPLAY OF
INFORMATION

Bernard SENACH

Institut National de Recherche d'Informatique et d'Automatique
Domaine de Voluceau — B.P. 105 - 78153 Le Chesnay - France

ABSTRACT

These studies have been conducted in a railway transportation system
and are centered on problem structuration activity. Skilled operators do
not apprehend the problems to be solved with all the accurate information:
they simplify it and some variables are not processed. This cognitive dif-
ficulty 1is stated 1in terms of problem space reduction and related to
the displayed information in order to define the general objective of a
computer aided decision making system.

1 - Introduction

The main problem with man machine communication is the compatibility
of two representations: the machine representation as a product of the
designer's choices and the operator's representation as a result of proces-
sing of the information displayed.

According to that perspective, the aim of ergonomics is to design befo-
rehand the machine in such a way that it is fitted with the subject's co-
gnitive representation (Bisseret and al., 1979).

The most frequent way to proceed 1is to design the machine from this co-

gnitive study (see for example Falzon, 1982).
Another way of looking at it is to find out if the information displayed

can induce an inaccurate cognitive representation.
As we will see, this situation can be rephrased in terms of problem
space reduction in order to define the general objective of decision ma-

king systems.

2 - The man machine system

The studies presented here have been conducted on the PARIS'subway. Our
research concerns the design of a new control room, including the computer
aided regulation system.

The most important task to be performed is to solve regulation problems,
with the aim of reducing the incidents'repercussions: the operators have to
maintain passengers transportation despite trafic interruptions.

-148-

3 - The man machine analysis

The man machine analysis was completed in three steps.

3-1. Wholistic approach

. A first step was a wholistic approach including usual job analysis'
tools and techniques: observations, interviews, critical incidents analysis
(Senach, Janet, 1979; Senach, 1980a).

3-2- Formal definition of the problems structure

The second step was centered on a critical issue for a computer aide
system: the problem solving activity. The objective was the identification
of formal features that would distinguish problem classes and types of
incidents, so that:

- all 1incidents showing the same pattern features belong to the same
problem class and define a single problem for the operators, what-
ever are the other differences in their surface description.

- two incidents different according to a formal feature belong to
two different problem classes, and consequently the operator
cannot use the same procedure to solve these two incidents.

The difficulty in identifying these formal features concerns the system
complexity: two incidents can be described by very different patterns (fot
the same variables, and if the same, different values).

An experimental problem solving simulation was run, using a withheld

information technique.

The subjects had to solve incidents by asking the information to the
experimenter, and each question was recorded. Eight skilled operators sol-
ved six problems (Senach, 1980b).

Results
The controlled objects are bi-dimensional:

— one dimension refers to the planning of the train movement
- the other dimension refers to the drivers assignment.

These two dimensions are independent: a driver does not always stay
with the same train all day long.

Therefore, the problem classes can be defined according to the structu-
re of the train-driver pair.

As a fonction of what has been planned for the driver and his train the
repercussion, and thus the problems complexity, may be very different.

Here are two examples of possible future states and of related problem:

A train (T) and a driver (D) have an incident:

(v2)
>

TERMINUS: what are the
planned operations for
the train and the
driver?

AR

-149-

Case 1:

The train had to go on a siding.
The driver had to be out of duty.

There is no repercussion on the other line.

Case 2:

The train had to go on a siding.
The driver had to take a new train.

The new train will be late, and the operator in the control room has to
find a new driver for the new train (5 different elementary cases may be
distinguished).

3-3. Problem space reduction

The third step further investigated a particular point: the pre-
vious experimental data showed that the skilled operators do not apprehend
all the relevant information necessary for the problem solving.

This lead us to the hypothesis of a cognitive difficulty in problem
solving that could be expressed in terms of problem space reduction.

This notion has already been used in problem solving litteratute
(Newell and Simon, 1972) but generally in another acceptation.

For 1instance, Simon and Reed (1976) stress that when the problem cons-
traints are well defined the problem solver has to evaluate few alternati-
ves and the task environment tends then to reduce the space in which the
search has to take place.

The problem solver may even more reduce the space using a strategy:
Elstein and al. (1978), pointed out that in complex systems — medical dia-
gnosis- when the potential size of the problem space is important, the ope-
rators have to reduce it: early hypothesis are generated in the very first
minutes of the meeting with the patient.

The meaning of the reduction is here quite different.

The general idea is that, even though skilled, a subject does not iden-—
tify and use the relations contained in a problem structure which are ne-
cessary in order to solve the problem.

In other words, the operator filters the displayed data and then may,
in a complex system, process a problem simpler than (or different from) the
real one.

Some clarification about the reduction mechanism has been suggested by
Richard (1972): during problem analysis, if a subject cannot refer to any
schemata gulding the identification of critical features he cannot use
planning; as soon as an operational representation is reached (1), analysis
activity stops and execution starts.

-150-

This description concerns what happen when the problem is really new
for the subject, but can be extended to experts by refering to the opera-
tors'difficulties.

In the existing regulation system at the beginning of an incident the
operators have to make a diagnosis and evaluate the repercussions, i.e
they have to identify which operations where planned for both the train and
the driver and what are the consequences if these operations are not ful-
filled.

The origin of the problem lays in short term memory limitations: it is
well known that it 1s very difficult to make inferences on two dimensional

objects.

The difficulty is increased because of the displayed information.
One of the two dimensions is more salient than the other:

- train positions are displayed in real time on a control panel and
the most important document 1is a graphical representation of the
process showing all the theoretic states and trains position.

- data about drivers are only supplied on an alphanumeric list pro-
viding for each driver all his assignments.

So the data are not organised as paired structures. Some of the
information is gathered by the operators: they write it down, but it is not
always reliable.

Exgerinent

An experiment 1intending to test the reduction hypothesis was carried
out (Senach, 1982). More precisely we tried to show that the information
about the drivers is not systematically processed by the operators. A pro-
blem solving simulation was used again.

Four incidents structurally different according to our formal features
had to be solved under two experimental conditions:

1. Subjects solved the four problem using the existing tools.

then
2. The same subjects solved the same four problem with a new information
display.

Five skilled operators took part to the experiment.

The new information display. Its structure was quite the same as the
existing tools structure. The only difference concerns some critical pro-
perties of the problem not apparent on the usual display, that were pointed
out (variables relations, order constraints between the trains...).

-151-

Results
The following figure shows that some of the variables are not processed:

— CMLL

. 14 h “r’“*““‘ %{MSL 4um
f_:ﬁ;ﬁw\&ﬁ wwmsy(
: 4 o¢ojr ity T"’ (/m

E: YrancVod &
y \———— i‘u o weur din “:3

'T Q»w chcw.u,

gPow'a Line &
l ">u(Lc\S . J: tg- 'dv:VrrJ
e -&,\.._ Lun \\i‘l’
? e TR

e dewee Wl b
\ Tk Am@r L«L'\"’ r bl o w8

ou"k L ‘) 7"’
L
k_.~—-7A Jnkr A@aﬁ_

~w ‘omuL_
ok 4 .
(ot e drie shy ot

Ao Some ein

The very interesting result is that in case 2 none of the solution at
the first problem presentation can make up for the delay of the new train.

There 1is a diagnosis error. In terms of information processing theory,
the problem space reduction can be described as a decision tree that would
have fewer branches than the theoretical one: some of these branches are
not used and might even not be known, and some given branches may not be
completely processed.

In other words, if the diagnosis is defined as the result of a catego-
rization process, the reduction means that the whole set of possible dia-
gnosis has not been built by the subjects or that the categories are defi-
ned in such a way that two different problem can be processed in the same
way by an operator.

-152-

4 - Conclusion

1. A first outcome 1in formulating these problem is to point out that
"usual"” job analysis may have some limits. Skilled operators are generally
treated as experts.

Ergonomics then rely on the knowledge of their operations, procedures

and/or strategies.
But we have shown here that in complex systems, skilled operators,

having several years of experience may have not completely structured the
problems.

2. A second outcome is that, even for a skilled operator, each incident
may appear as a new one. In other words, the degree of certainty of the
efficiency of a given procedure is low: two different problems are proces-
sed in the same way, and the procedure is not so efficient for the both
problems. This results in that, in the operators' mind, all the incidents
are different.

3. The computer aided system relies on the formal features that have been
identified: up to now we have only dealt with the problem analysis activity
(diagnosis).

In problem solving, the general structure of the solutions is a
substitution: the operators have to try and replace either the trains
or the drivers.

The operators have then to construct the possible substitution set with
a combinatorial activity.

The new information display used in the second experiment seems to pro-
vide in some cases a good diagnosis aid, but it was not kept as an effecti-
ve tool because there was a more convenient display, providing both diagno-
sis and problem solving aiding.

This last display can be described as follows:

- According to which problem class belong an incident, the information
needed to solve it 1is not the same: what are the available
replacement trains and/or drivers?

- It 1is possible to precisely define the meaning of "available" from
the analysis of experts decision making. The analysis of the choice
criteria between several possible substitution elements results in a
solution hierarchy.

Having defined basic tool structure, it is the necessary to clarify the
automation level. Several options are possible: from the simple information

display (data), to their combination (solutions), and up to an expert system.

-153-

REFERENCES

Bisseret, A., Michard, A., Boutin, P. (1979)
Eléments introductifs 3 1'ergonomie des systémes Hommes-Machines.

Informatique et Sciences Humaines, n°® 44,

Elstein, A.S.; Shulman, L.S.; Sprafka, S.A. (1978)
Medical Problem Solving, An Analysis of clinical reasoning. Harvard

University Press. Cambridge, Massachusetts.

Falzon, P. (1982)
Displays structures: compatibility with the operators'mental repre-

sentation and reasonning process. Proceedings of the 2nd European
Annual Manual, June 1982, Bonn.

Newell, A., Simon, H. (1972)
Human Problem Solving. Englewood Cliffs, Prentice-Hall.

Richard, J.F. (1982)
Le traltement humain de 1'information: Sa contribution aux sciences

cognitives. Communication au Colloque de 1'Association pour la
Recherche Cognitive, Février 1982, Pont 3 Mousson.

Senach, B.; Janet, E. (1979)
Propositions pour 1'aménagement du Poste de Commandes Centralisées

de la ligne de Sceaux. INRIA RER 7910 ROl

Senach, B. (1980a)
Analyse du travail de contrdle d'un réseau ferré: Recherche des ina-

daptations du syst@me Homme-Machine. INRIA RER 8005 RO2

Senach, B. (1980b)
Analyse du travail de régulation d'un réseau ferré: Résolution d'in-

cidents d'exploitation. INRIA RER 8012 ROS.

Senach, B. (1982)
Aide 3 la résolution de probléme par présentation graphique des

informations. INRIA Mars 1982, n° 13.

Simon, H.A., Reed, S.K. (1976)
Modeling strategy shifts in a problem solving task. Cognitive Psy-

chology, 8, 86-97.

-154-

-155-

The Case for Control Independence in -
Dialogue-oriented Software

-- Draft version -- i L}J"‘M’
by o gt/’W %(f
Sture Higglund - . R
Software Systems Research Center .\j:-)-

Linkoping University and Institute of Technology,
S-581 83 Linkoping,
Sweden W",(

ABSTRACT: Designing the human-computer interface in interactive
systems is a task considerably different from designing algorithmic
programs for computation. Thus we should have language constructs |
and employ software architectures, which recognize these differences
when implementing dialogue-oriented software. This paper discusses
the concept of control independence, as a basis for realizing software
where dialogue control is completely separated from' internal
computations. In this way modelling of multi-style dialogues can be
supported. Some experiences with tool systems, which implement this)
approach are reviewed.

W’L‘Md wor

1. INTRODUCTION.

Computing devices were originally thought of as data processing
machines, where input is fed into the system and computed output
delivered as a result. Characteristic for this view is that the computer
system implements a mechanism for transforming input to output
according to some algorithm. Parameters for the processing are
elements of data, the management of which is considered secondary to
the computations.

However, as data processing applications matured, the focus of
interest were gradually shifted in favour of the data management
aspects. Computers became more and more thought of as instrumental
for handling repositories of data. Under this view, processing of the
data is but one function available when storing, organizing and
retrieving information. Database systems are becoming essential as
parts of the software environments provided for implementation of
various computerized services. The same evolution is reflected in the
development of higher-level programming languages with the
introduction of support for data abstractions, ob ject-oriented
computations and data-driven programs [LIS77, ING78].

Jaser (s 0

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-156-

The current development seems to emphasize more and more the
central role of communication in connection with computer utilization.
This fact is manifested by the increasing importance attributed to
internal cooperation between different software systems or physical
communication in distributed computer networks, as well as the need
to understand and implement efficient human-machine communication
using the computer as a responsive tool for human problem solving.

This discussion brings us to the central topic of this paper. It appears
that there are many cases, when a software system should be viewed
as a realization of a communication system for an information
repository where different kinds of data processing tasks can be
initiated. Then conventional programming languages are at best
inappropriate as tools for thought, since they are primarily suited for
expressing algorithmic processing of data. Instead we need support
for expressing models of human-computer communication (and other
forms of process communication) and information management in a
more declarative way than the procedural paradigm of typical
programming languages, i.e. descriptions oriented more towards
properties of a system rather than explicit specifications of kow these
properties are realized.

In the area of information management this goal is pursued along
several lines within different areas of research. For instance, daie
abstractions are studied in connection with programming languages,
conceptual modelling is a vital issue within the database community
and knowledge engineering has emerged as a subject of great
practical applicability from artificial intelligence research.

The rest of this paper will be concerned with models of
human-computer communication and software architecture supporting
such models. The need for adequate techniques for implementation of
user interfaces should be apparent from the fact that typically
something like two thirds of the program text in interactive
application programs are concerned with some aspect of dialogue
management. Guidelines for designing dialogues and tools for their
implementation have been presented in numerous papers and some
books, e.g. [MAR73, FIT79, SHN80]. We will add to that tradition, but
also supply some observations with general implications for the
organization of interactive software, which we feel are of some
importance.

The following list summarizes some properties, which we feel are
important for a software system implementing a human-computer
interface:

1. The internal structure of the software system should
correspond as far as possible to the user’s model of the system,

which is expected to conform to its external behaviour. Then .

requests for changes in the systems behaviour are easily
mapped to modifications of its internal definition.

2. The description of computations and internal data management
should be separated as far as possible from the definition of

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-157-
the end-user dialogue, for reasons that we be detailed below.

3. Supply of ample help information, explanation facilities and
possibilities for rapid browsing of available information and
operations should be encouraged.

4. Different user categories should be accommodated and
systematic support for user growth, in the sense that more
advanced techniques for utilizing the system is naturally
acquired over time, should be part of the approach.

5. Undoing of unintended actions due to misconceptions,
erroneous input or premature decisions is an important option,
both for the purpose of providing safety measures and as a
means to explore the behaviour of a system.

In the following sections we will discuss the consequences of such a
view on the structure of software systems and on the methodology
and techniques needed to develop such software. The two main issues
to be treated are:

%+ The utility of control independence as a principle for
implementation of human-computer interfaces. Under this
principle we can decide on the particulars of the dialogue
independently of the data processing aspects of our
application. In particular multi-style dialogues can be supported
with dynamic adaption of the dialogue to the needs of the end
user.

% The utility of state tramsition networks for modelling the
dialogue behaviour of interactive software, in the tradition
reflected by the work of several others as well, e.g. [PARB9,
w0070, LUC80, DEHSI].

Support for abstractions in the design of software, the notion of
control independence, dialogue modelling and experiences from
developing and using some tools and systems supporting the proposed
approach is presented in the following sections.

2. ABSTRACTIONS AND DIALOGUE CONTROL.

One main trend during the history of programming languages and systems
has been a striving towards higher levels of conceptual abstractions in order
to promote more reliable and maintainable software systems. Another way of
expressing this endeavor is as a search for an increased problem orientation
in the design of applications programs, leaving details of implementation to
lower levels: of systems software. Programming in one sense means
transforming an abstract requirements specification into a concrete
executable implementation. This process is simplified, if the number of
details that have to be added during the programming is confined to a
minimum, ie. if abstractions are supported in our programming
environment.

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-158-
Writing a program presumes the ability to describe a) states (or objects) b)

operations upon states (objects) and c) control for sequencing operations.
Traditional programming languages have a certain degree of built-in
support for using abstractions when dealing with these three aspects of a
program. However there is also a need for programmer defined abstractions
as a means to improve software quality and productivity. Conventionally the
concept of a procedure, performing parameterized processing of data, is the
main abstraction facility. Thus by writing a procedure and specifying ‘its
input/output data relationships, a module is created which can (hopefully) be
used within different environments without knowledge of its internal
realization. A later generation of emerging languages, eg. CLU [LIS77] and
Alphard [SHA77], pioneered by Simula [DAHB8), in addition supports the
concept of user-defined data abstractions for the purpose of encapsulation
of all information about the abstraction and thus achieving representational
independence.

Data abstractions as well as the idea of schema-driven interpretation of
stored representations of data in database systems, illuminates a very
important concept, namely the pursuit of data independence in software.
This is to be understood as the encapsulation of the concrete
representation of data in such a way that it can be changed
independently of the programs which use the data. We feel that a
similar abstraction facility for the external interface to a
human-computer system is very useful. The idea is to separate the
description of the contents of a dialogue from the decision on how
the actual dialogue is to be performed. Then, for instance, we can
support multi-style dialogues based on either VDU forms,
menu-selection, command language, etc, using the same underlaying
definitions of objects and operations. We will use the term control
independence to denote such an organization of software. In section 4
of this paper examples of systems based on this principle will be
given.

A variation of the same principle is when we develop a data
processing application by building a knowledge database in the
tradition of artificial intelligence research, and then implement the
software as various interpreters for the same knowledge base. Then
each interpreter is imposing different control and we have a control
independence in the sense that the knowledge base and the set of
interpreters can evolve comparatively independently.

The principle of control independence is of course implicit in much of
the current work on human-computer interfaces, since techniques for
table-driven screen forms dialogues, command language parser
generators, etc. are in wide-spread use. However it seems to us that
few systematic attempts have been made to use a common internal
description as a basis for dialogues in different styles, as chosen
dynamically by the end user. This matter will be further discussed .in
the following sections.

There are some significant short-comings asseciated with most
existing program packages which support implementation of
interactive software:

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-159-

- There is often a lack of hardware independence in an implemented

dialogue system. Not only may a system restrict the dialogue to a
certain type of terminals (e.g. with a particular local "intelligence"),
but it may also be difficult to adapt the dialogue design to new
generation of terminals, changing response times or transmission
speeds etc.

- Many tools are restricted in the sense that they support some
specific kinds of dialogue types and exclude (definitely or almost)
other dialogue organizations.

- When dialogue management is supported by adding a set of
specialized macros or a library of procedures to a general purpose
language, there is no guarantee that dialogue management is uniform
throughout an application system.

This discussion is intended to elucidate the fact that there seems: to
be a shortage of dialogue design and implementation tools in the
intermediate area between general-purpose programming languages
extended with macro or program libraries on the one hand and
special-purpose systems supporting the development of dialogue
programs on the other. The approach to dialogue development
presented in the next section represents an attempt to provide a
comprehensive and generally useful model for the task of dialogue
design and implementation. The model should be general enough to
include most of the customary techniques for man-machine dialogues.

3. MODELLING OF DIALOGUES.

For the purpose of understanding how to design a human-computer
dialogue we may assume that it is performed according to an explicit
predefined script. The script defines which input messages can be
understood and processed by the system. The interpretation of a
message is made within a message context, or a mode as it is often
called. A dialogue script contains a distinct number of such contexts
and the interpretation of identical messages may differ in different
contexts. In addition the response following a given input message
also depends on the current state of the computation, i.e. the history
of the previous interactions.

Messages accepted by the system are either simple, i.e. atomic tokens,
or compound. In the latter case interactions may take place while the
message is formulated. Typical examples of compound messages are
screen forms or parameterized commands, while prompted responses or
single command parameters may be viewed as simple messages. A
dialogue script further defines the possible sequencing of messages
particularly the transitions between message contexts. l\
The concepts of message, message context and context transitions are
extremely useful as a common basis for an understanding of dialogue
models used in current applications software. Thus we may analyze a

dialogue program from the following aspects:

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-160-
% the number of message contexts implemented.
* the pattern of possible transitions between contexts.
i the support for compound messages.

g the size of the set of messages valid in a given context.

i the interplay between system prompts and message formulation.

Creating a description of the messages, contexts and transition
patterns can be understood as defining a grammar for the dialogue.
Since we have not yet discussed the style of the dialogue, or the
dialogue technique in the sense of [MAR73], we may view the
description as the deep structure. Various surface realizations of the
~dialogue are then possible and can be selected depending on the
characteristics of the application or the preferences of the end user,

e.g:

Prompted input and menu-selection. In this case there is usually a
large number of contexts, one for each menu etc, and no specific
notion of compound messages. Menus can be used when there is a
reasonably small set of valid messages, which simplifies message
formulation since numeric selection or pointing devices can be utilized.
The pattern of context transitions can be arbitrarily complex.

Command language. Commands are usually formulated as compound
messages, grouped together in a small number of contexts often
arranged in a hierarchy. Since there is a finite set of commands valid
within a given context, menus may be requested for selection. For
each command with parameters, there is a substructure of contexts
corresponding to the set of parameters. The transition between these
contexts is sequential when positional parameters are used. Else there
is an extra context for the set of keywords for switching to the
appropriate labeled parameter context.

VDU forms. This case resembles the previous one with respect to the
two-level structure of compound messages, although the pattern of
transitions between forms is usually more varied. Within a form, each
field defines a message context with transitions forced by cursor
positioning on the screen. Notice however, that some transitions may
be prohibited, for instance when a display-only field is not reachable
with the cursor.

It should be clear from this exemplifying discussion, that the degree
of user initiative in a human-computer dialogue has to do with the
number of message contexts implemented and especially the permitted
transition patterns. If we assume a certain operational power in an
application system, i.e. a given set of functions that can be invoked,
then in general a high degree of user initiative results from having
few message contexts and user-controlled transition patterns. On the
other hand more detailed messages have to be formulated in a large
context, which makes such a solution less attractive. In practice, the
important factor is of course how well the structure of contexts and
transitions corresponds to the user’s perception of the system and the
way he wants to perform his tasks.

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-161-

It is often assumed that command languages give a high degree of
user initiative, while e.g. prompted responses gives the user limited
control over the dialogue. As can be seen from the discussion above,
such a statement is misleading. The style of the dialogue can usually
be changed independently of the context structure.

The case where interactions between the user and the system are
allowed while a compound message is formulated (e.g. correcting a
validation error when entering a value for a field in a form) may be
viewed as an embedded dialogue. Another instance of embedded
dialogues may occur in systems which recognize certain inputs as
exceptional, e.g. when interpreting a single question mark as a help
request instead as a regular response. The handling of an exceptional
input message is not defined locally for a context, but globally for
several contexts.

4. APPLICATIONS EXPERIENCES.

We have performed several application-oriented projects exploiting
the approach to modelling of interactive software, which were
described in the previous sections. A short description of the IDECS
and MEDICS projects will be given here, as an illustration of the
usefulness of the approach.

4.1 The IDECS system for dialogue prototyping

The IDECS systems was developed as tool for prototyping interactive
systems, where the style of the human-computer dialogue could not be
decided in advance. The tool should thus support multi-style
dialogues, be easy to use and allow dynamic changes of the dialogue
behaviour during execution of the prototype system. The work was
based on the concept of a conversation graph, ie. a directed network
where nodes represent message contexts and the arcs correspond to
valid context transitions. The graph structure acts as a grammar for
the message sequences, which may be accepteded during a dialogue.
The IDECS system is an interactive environment for creation and
interpretation of such descriptions [HAG80]. It is implemented in Lisp
[SAN78].

The conversation graph resembles very much the idea of augmented
transition networks (ATN) in the sense of Woods [WOO70], although
tokens to be parsed are rather messages (simple or compound) than
single symbols. Another difference is that the conditions for accepting
a message is associated with nodes and not with arcs, ie. arc
descriptions are condensed into the predecessor node. The reason for
this is that interacting with a program is preferably viewed by end
users as an action performed within a certain state, rather than as a
transition between states. This is important for the purpose of
explaining the programmed dialogue model to users and for the
simplicity of the interactive tools used for dialogue description and
maintenance.

Different variations of state transition diagrams have been used for
the purpose of describing human-computer interfaces, e.g. [PARSY,

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-162-
LUC80, DEHSI] or syntax diagrams used for specification of valid
language constructs in e.g. Pascal It should be possible to support
most of these approaches with the tools provided by the IDECS
system.

The basic idea in the IDECS system is that an application program is
organized according to the structure of the end-user dialogue. Thus
each message context defines a module in the system, a node in the
conversation graph. All information which has to do with end user
interactions is represented as declarations in these nodes, and treated
as named attributes. Procedural code in the system is either located to
program modules, which are not allowed to interact directly with the
end user, or else stored as values of attributes in the nodes.

Examples of attributes associated with nodes in the conversation
graph are:

2 Prompts and guiding texts, which may be dynamically selected
for presentation depending on the current style of the dialogue
or the preferences of the end user.

* Positioning information for prompts, to be used when a
screen-oriented dialogue style is used.

2 Type information for the anticipated response. This
information is used to direct parsing and may also be given in
the form of an invocation of a lower level conversation graph,
e.g. when a compound message is to be read from the terminal.

. Help information,which can be requested as an aid for the user
before the input message is formulated.

i Constraints and defaults, which should apply to entered
messages.

* Actions and responses, which will be initiated when the message
is processed.

Transition instructions, which direct the transfer to another or
the same node in the graph.

To write an interactive program, including the the dialogue script, in
IDECS we thus have to create a set of interaction nodes and assign
attributes to these nodes. For actual execution of the program a node
interpreter is used, and we have also experimented with automated
translations of a conversation graph to a procedural program. The
correspondence between the users model of the system as a set of
message contexts and the structure of the implemented program has
proven very useful as an aid when the dialogue script has to be
changed. Surprisingly enough experiences with IDECS show that when
such a tool is used, conventional programming is almost completely
eliminated for a non-trivial range of applications [HAG80]

4.2 The MEDICS system for educational simulations

The MEDICS system supports interactive development, maintenance
and executions of patient management problems (PMPs), to be used

CONTROL |INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-163-

for training medical students in clinical decision making. Such
simulations allow the student to gather information about the patient
and act in order to provide the proper management of the case. The
system is of some interest for the topic of this paper, since it
demonstrates how different types of control are applied to one
common description of a specific PMP. These matters are further

explained in [HAG82]

MEDICS is implemented with the help of a slightly modified version
of the IDECS system described above. It uses the same model of the
software as organized around a transition network, which defines the
human-computer dialogue. However the contexts appearing as nodes in
the network are more compound than in the IDECS case. Within each
context the student can gather information and perform certain
actions. Some actions explicitly calls for transitions to a new context.
Such transitions can also be forced by the current state of the
simulation. Even more than in the IDECS case, the need for explicit
programming is reduced to a minimum. The fact that the program
structure mirrors the structure of the dialogue makes simulation
"programs” easy to understand and maintain.

5. CONCLUSIONS.

In this paper we have advanced the principle of control independence

as an important tool for realizing flexible interactive software and
multi-style human-computer dialogues. Our experiences indicate that
many application programs are reduced to modules of limited size
which implements control, acting as interpreters for
application-oriented descriptive structures, when this approach is
followed. The usefulness of state transition: networks as a basis for
dialogue software is confirmed by our experiences.

ACKNOWLEDGEMENTS

Major contributions to the ideas and systems described in this paper
have been made by Usten Oskarsson, Hans Holmgren, Olle Rosin and

Roland Tibell.

REFERENCES:

[DAH68] Dahl, O.]., Myhrhaug, B., and Nygard, K., The SIMULA
67 common base language. Publ. No. §-2 , Norwegian
Computing Center, Oslo, (1968).

[DEHSI] Dehning, W., Essig, H., and Maas, S., The Adaption of
Virtual Man-Computer Interfaces to User Requirements in
Dialogs. Springer-Verlag, 1981.

[FIT79] Fitter, M. Towards more "natural” interactive Systems., Int.
J. of Man-Machine Studies 11, pp 339-350, 1979.

[HAG80] Higglund, S., Contributions fto the Development of
Methods and Tools for Interactive Design of Applications
Software. PhD dissertation, Linkoping University, 1980.

[HAGSI]

[ING78]

[LIs77]

[LUC80]

[MAR73]

[PAR76]

[SAN78]

[SHAT77]

[SHN80]

[WOO70]

CONTROL INDEPENDENCE IN SOFTWARE - DRAFT, JUNE 82

-164-

Higglund, S., et al, Specifying Control and Data in the
Design of Educational Software. Computers & Education,
vol 6, no 1, Pergamon Press, 1982.

Ingalls, D.H.H., The Smalltalk-76 Programming System
Design and Implementation. Proc 5th ACM Symp. on
Principles of Programming Languages, pp 9-16, (1978).
Liskow, B., Snyder, A. Atkinson, R. and Scaffert, C.
Abstraction Mechanisms in CLU, Comm. ACM 20, 8, (Aug
1977), pp 564-576.

Lucas, P., On the Structure of Application Programs, in
B jorner (ed.), Abstract Software Specifications,
Springer-Verlag 1980.

Martin, J., Design of Man-Computer Dialogues,
Prentice-Hall, Englewood Cliffs, New Jersey, (1973).
Parnas, D. L., On the Design and Development of
Program Families. /[EEE Trans. on Software Eng. SE-2, pp
1-9, (Mar 1976).

Sandewall, E, Programming in an Interactive
Environment: the Lisp Experience. ACM Comp. Surveys,
vol. 10, no 1, pp 35 -71 (1978).

Shaw, M., and Wulf, W.A,, Abstraction and Verification
in Alphard: Defining and Specifying Iteration and
Generators., Comm. ACM 20, 8, (Aug 1977), pp 553-564.
Shneiderman, B., Software Psychology, ~ Whintrop
Publishers, Cambridge, Mass., (1980).

Woods, W.A., Transition Network Grammars for Natural
Language Analysis. Comm. ACM, wol 13, no 10, pp 591 -
606 (1970).

-165-

Displays of Program Structure! Why and How?

T.R.G. Green

MRC /55RC Social & Anplied Psychology Unit
Dept of Psaychology
The University
Sheffield 510 TN

1. General outline

To comprehend, debug, modify, update, document, or evern to recognise a
program, information must be extracted from the written notation. However, some
types of information are hidden in the text, rather than manifest, which means that
the programmer has to go through a series of mental operztions. {("Where can this
subroutine be called from?", for instance, usvally reguires s scan of a good deal of
text), There are notational devices which will help to improve the visibility of
information, and there are structural devices which help to raduce the complexity of
information, but it is hard to see how all the information that programmers need can

egasily be made vizible at the same time,

The written notation in its usual form is also very bulky and very ill-cued.
Unlike normal printed English it contains neither tvpoaraphical cues, which in
printed English can be both diverse and ingenious, nor verbal cues such as "Next, ..."
or "In contrast, «." and the like, Some have diagnosed this as solely a problem of
bulk, and have invented very compact notations such as APL. Otherz have tried
using a perceptual coding rather than a symbolic one, and have developed flowcharts
and structure diagrams., Recently there have been attempts to create abbreviated
displays, by veplacing the inner loops of programs with 2 row of dots,
Unfortunately, this approach sometimes hides the very information the programmer

is seeking.

There are existing algorithms capable of revealing much of the information
needed by the programmer; and there are possible approaches to abbreviating the
display of information in more effective ways, This paper outlines a proposed

project to evaluate their practical utility, Specifically, we wish to take a real-life

-166-

Thomas Green

class of programs and provide an interactive tool for analysing them.

A suitable class of real-life programs seems to be Basic programs for
hobbyists, especially games., These are short but interestingly filled with logic, and
their typical dirty style will be a good test. Working with Basic programs will help
to concentrate our minds on the need to provide an interface of extreme utility,
since the typical hobbyist will lose patience quickly with anything which demands
unnecessary effort, There is nothing very sacrosanct about the choice of Basic - it

merely happens to fit the bill} another interesting choice would have been Cobol.

The task of a tool to assist comprehension of these programs would bel

1, Provide a mechanism for answering certain common types of question, such
as "How can this program reach this point?", "What does the value of this
identifier depend on at this point?", etc, These guestions can be answered
mechanically with no specific knowledge of programs and their components,

but the degree of detail to present will need some careful thought.

2 Provide a mechanism for recognising the simpler components of
programming. There is no challenge in recognising those components that
are defined by control structures, such as for-loops and procedures: these
are easy to recognise by algorithm but just as easy for the reader to spot
(in Pascal, at least! Basic is another story). The task is recognising
‘schemas’, bringing together statements which may be quite far apart from
each other. The use of a flag or state variable is a good example. Clearly
this is a step towards a knowledge-based expert system, but not a very

large step as presently envisaged,

N Present abbreviated displays. The ideal abbreviation would suppress all
material that is unimportant to the task in hand, and would cue the

remaining material according to importance.

Each of these points will be discussed in more detail below.

7, Background: Sheffield

-167-
Thomas Green

Our team at Sheffield has conducted a number of investigations of the effects
of programming language design on programming performance, Two are particularly
warth noticing here. In the first, Sime, Green and Guest (1977) compared the
performance of novices writing simple conditional programs in three different
languages. Nested conditionals, in the Algol tradition, produced significantly fewer
errors of logic than jump-style conditionals, in the Fortran tradition. But the ‘error
lifetimes’ - the number of debugging runs required, given the first run failed - were
very similar for Algol-like and Fortran-like conditionals, A third language,
however, called Nest-INE, which used the same logical structure as Algol but which
was designed to facilitate answering questions, brought the error lifetimes down to
one-tenth of their Algol/Fortran-like values. The second experiment was designed
to extend this result, by investigating professionals instead of novices, in a
comprehension exercise instead of a programming task, In it, Green (1977} showed
that questions of the form "Under what conditions can this program do
such—-and-such?" were answered significantly faster in Mest-INE than in the

Algol/Fortran-like dialects,

The difference between the Algol-like dialect and Nest-IME is very small. In
the algol-like style, conditionals used the conventional else and were not explicitly
ended, Nest-INE was more explicit!

IF predicatet

NOT predicate! «+ .
END predicate

These two experiments show first, that a small change in the language can
profoundly affect performance, at least for novices! second, that it can affect
professionals as well, though not to the same degree; and third, that the effect on
novices appears to be caused by changes in the ease of extracting information from

nrograms, rather than by changes in ‘writability’,

These experiments were performed with extremely small programs. It is a
reasonable hypothesis that the difficulty of extracting information rises very
sharply as programs get longer. In real programs, programmers will need a variety
of different types of information, about data flow as well as control flow; but the

overall principle should still apply.

‘Thomas Green -168-

2, Some example technigues

Dependency analyses,

The methods of static analysis (Cocke and Allen, 1974) are now well-known.
The program is divided into chunks or ‘intervals’ which are entered only from the
head. The interval-graph can then itself be analysed to produce higher-order
intervals, and so on until an irreducible graph is obtained, In this process it is not
difficult to specify the data dependencies between chunks, showing which variables

are live at a given point, etc,

From such a graph it is also possible to work backwards from a given point to
record the paths which enter a given chunk. Thus it is easy to present at least some
information in answer to the question "How can this point be reached?" It will be a
problem to present it digestibly, but according to the results of our experiments it

is vital to do so.

Components

The perception of program structure clearly demands labelling the uses to
which chunks and variables are put. Given the data dependency analysis, certain
types of chunk are quite easy to labeli straightforward FOR-NEXT constructions
fall out of the syntax analysis, of course, but while-type loops can also be
identified readily enough, if their construction follows standard forms. Simple
subroutines where all the "COMESUB" statements precede the RETURMNs are also
quite straightforward, Simple IF-THEN-ELSEs, even nested, should be identifiable,

as long as the branches re-unite at some point.

Possible answers to "What does variable V do?" (in the world of hobby
programs) include! state variable; simple counter} running total} arithmetic
computations} transmitter of parameters and results} a constant (set only once); and

of course Don’t Know, Each of these can be identified in straightforward cases.

Abbreviations

It is not easy to decide on an effective strategy for abbreviations. Consider

the following fragment:

total = O}
forji=1toNdo

I BN B B G D B D B D BE B BE B B BE D BN AEm EE A -

Thomas Green -169-

if A[j1 > 0 then total i= total + 1}
writeln (total)

What we do not want to do is to abbreviate that into

total = O}
FOY sevrnse
writeln (total)

Yet that is exactly what many structure-based editors do {eg the Cornell Program

Synthesizer).

One approach might be to present a display that was organised by degree of
importance, This approach comes from work on discourse analysis, notably Hintsch
and van Dijk (1978), Unfortunately it is a characteristic of their method of analysis
that the ‘importance’ of a propesition depends on the number of other propositions
for which it is a precondition of interpretation; and taken literally, in a program the
final output statement tends to depend on the entire rest of the program! It is not

clear at the time of writing whether a satisfactory solution can be found.

Conclusions

The three steps of the previous section display an increasing departure from
algorithmic methods and an increasing rveliance on identifying forms of analysis
which are psychologically useful. At one end, mechanical labour-saving techniques
are well-undorstood, and our previous experiments indicate that they will be very
useful if well interfaced; at the other end, the possibility of an
importance-analysis, rather than presenting a program abbreviated by

control-depth, is anything but well-understood.

At the time of writing developments are being made in the first version of
such a tool, Examples of the the type of analysis it generates will be given and the
problems of an interface will be discussed, From this point we intend to perform
axperiments using simulated software, to determine the efficacy of various options,

before evaluating a working version,

References

-170-

Thomas Green

Cocke, J. and Allen, F. E. (1974) A program data flow analysis procedure.

Communications of the ACM,

Green, T, R, G. (1977) Conditional program statements and their comprehensibility

to professional programmers, Journal of Occupational Psychology, 50, 92-10%.

Kintsch, W, and van Dijk, T. A, (1972) Toward a model of text comprehension and

production. Psychological Review, £5, BL3-394,

Sime, M. E. Green, T. R. Gy and Guest, D. J. (1977) Scope marking in computer

conditionals - psychological evaluation, International Journal of

Man-Machine Studies, ¢, 107-112,

ABSTRACT
-171-
The Evaluation of a Frogramming Support Environment

Andrew Arblaster.
tueen Mary College
University of London

INTRODUCTION

This report is an account of a study carried out by Logica Ltd.
for the UK Royal Signals and Radar Establishment.

The emergence of Ada as a standard programming language will have
a major impact on the quality of embedded computer systems.

This impact will depend as much on the quality of Ada Frogramming
Support Environments (Apses) as on the language itself. A great
influence on the quality of an Apse is the Human Factors quality
of that Apse. The purpose of the project reported here was to
evaluate the design of one particular Apse, produced for the UK
Department of Industry and Ministry of Defence and known therefore
as the "UK Apse” {(Dol, 19813. This report does not discuss the
details of the design of the UK Apse or the detailed
recommendations made as a result of the study. We concentrate
here on the methods used to evaluate the design and the relative
effectiveness of these.

The factors included in the evaluation were the external user
interfaces, the sort of things usually meant by “Human Engineering’,
and also issues related to the structure of the Apse. In the

first category are such things as command language features and

in the second the functions of components of the Apse and the
interactions between them. In addition it was necessary to

consider issues related to the use of the Apse as an organisational
component in software projects — its role in software management
besides its role as a set of software tools. When we consider all
of these factors we can see that the term “programming support
environment’ is not entirely apt. "Frogramming’, unless we
radically widen its definition, is very far from the whole

story where software development is concerned. Consideration of
existing software tools in isolation and of structural requirements
for existing environments demonstrates that support is needed,

and is often offered, for a much wider range of activities than
what is normally understood by “programming’. A support

environment intended to host development of large scale systems
must provide support for activities throughout the software
lifecycle. Most of these activities are influenced greatly

by human factors.

The study itself was conducted in three phases. First a suwvey

of the current state of knowledge of human factors as applied

to programming support environments was conducted. Secondly

the STOMEMAN requirements for Apses were studied with the aim

of determining the human factors implications of these
requirements. The third phase of the study was the evaluation
proper, concentrating on the human interfaces and on the structural

features of the UK Apse design. Tﬂgzlaat phase embodied two

“rapid prototyping’ exercises; one studied the implementation and
use of the command language interpreter, and the other a particular
application of the Apse Database. The study was therefore a

survey of "applicable’ knowledge and an application of that
knowledge to evaluation of a very substantial software system

at the design stage. The applied part of the study was focussed
specifically on aspects of UK Apse design, though it is hoped

that the evaluation methods used can be applied to other

software systems and that the findings will have implications

for other Apse designs. This form of *applied” project in the
human factors field is very much the exception rather than the
rule: in this field the aim of most empirical studies is to
develop "applicable” design principles, rather than to apply
those principles to a particular design. 0f course, much anecdotal
‘work® also exists — armchair musings which may have some

value but which can provide only the most fragile underpinnings
for evaluation of a software system design.

THE SURVEY

The survey phase of the study outlined the factors to be
considered from the point of view of the comparatively new field
of software engineering, then from the point of view of human
factors work, after which a synthesis was attempted. The design
of programming environments was then considered within the
framework which had been built up. Finally critical elements

of the framework was incorporated in two checklists, the first
relating a software engineering taxonomy of software quality
(figure 1) to human factors issues and the second a consolidation
and abstraction of different checklists which have been proposed
for interactive systems design criteria. These checklists were
developed for use in later phases of the study as evaluation

guidelines.

STOMEMAN REVIEW

The basic requirements document for Apses is STONEMAN <{DoD 1980}./¢A
The second phase of the study investigated the congruencies '
between human factors issues and the STONEMAN requirements.

During the evolution of the Apse concept since STONEMAN

considerable development and modification of the ideas which

had been put forward proved to have taken place; however, it

was found that the STONEMAN reguirementswere generally not
inconsistent with high human factors quality.

EVALUATION

The evaluation phase itself was intended to identify :

- fundamental aspects of the design which needed
to be changed for human factors reasons. It was
hoped that these would be few.

- more superficial improvements which would
nevertheless have a significant impact on human

-173-

factors.

- additional software tools and capabilities required
to make the UK Apse understandable, usable and robust.

This report does not describe the detailed recommendations of
this phase of the study, but concentrates on the methods used
ta arrive at those recommendations.

Farticular empirical investigations supporting the evaluation
weres:

- construction of, and experimentation with, a
prototype model of the Command Language interpreter.

~ the construction of a prototype Kernel Apse database
model. This was an ad hoc realisation of a particular
database fragment together with a limited prototype
Database Utility. The database fragment used was taken
from a data model of a part of a software engineering
system which was being developed at the same time as

the study.

- The development of a scenario of use of the Apse
for a nontrivial test case project which was assumed to
be being developed using the UK Apse facilities.
This was intended to provide a focus for team discussions
of situations facing a typical software development team
using the Apse. The objective was to provide a starting

point for consideration of likely patterns of use of the Apse.

The scenaric also provided ideas of likely commands
which would be issued to the Command Language Interpreter
and a data model for trial using the database prototype.

CONCLUSION

Finally this report comments on the success of the methods
of evaluation used in the study, and the lessons for future
activities of this sort. The prototyping exercises were particularly

successful in the case

of the Command Language Interpreter, where it was felt that

much of value was learned duwing the implementation, even hefaore
trials of the system.

Broadly, factors related to perceptual properties, cognitive
properties and available feedback were identified as being critical.
Different empirical activities provided information on different

of these factors.
The relationship of these psychological factors to software

guality factors will be described.

REFERENCES

DoD 1980: Requirements for Ada Frogramming Support Environments:
nGTOMEMAN" . US Department of Defense.

Dol 1981: UK Ada Study Final Technical Report. UK Department of
Industry.

|

03T moquuﬁumuunumcu X371enD) oa1em3jos :F 2anbig

X3iiTqesusubny je—o A37119eT3TPON |

Xyt1vqrbed

SSaUasSTOUO0D

X3T1Tqepuelsaapun |
ssaupaInlionals //

sininln

X3TiTqRUTRIUTeN |

ﬁ‘mmm=m>ﬁumﬁuom&©|uamm

AITTTYRIS3L

ﬁw‘ SSQUSA T3E0 TUNUWOD

[A3 TTTQTSSa0OY

-174-

/// A3TT1T3In
[Kouato133y® 90T1A3(buyasauibus ueuny Texausn

[K317 1qRe3UN0ddY

ﬂ\ Kouajzstisuo) AaTTTan

Xo5us1o733d 0——— gy1-sv

ﬂ‘muﬂummucﬁ\mmm:umsnom

| ssauajaTdwod

K3trIqeTiay

ﬁ‘ Koeanooy

[SSoupauTe3juUod-JI T3S

2 2ouapuadaput-ad1aeQ %uaaﬂn@uMOﬁlTizz

-175-

II. FACILITATING HUMAN-COMPUTER INTERACTIGON

B. System design issues

-176-

-177-

Why Systems Transparency ?

Susanne Maass .
Fachbereich Informatik, Universitaet Bamburg

Userfriendliness, ergonomic systems design, systems flexibility,
ease of use, systems transparency - these are some of the
increasingly well-known catchwords in computer human factors
discussions of the last five years (cf. DEHNING/ESSIG/MAASS 81).
This paper will concentrate on the issue of systems transparency.
It characterises the computer not any more as a number crunching
machine but as a communication medium, even as a virtual
communication partner programmed for the performance of certain
roles.

The analogy with human communication provides concepts for a new
understanding of the users' situation in their interaction with a
computer system. It will become obvious that systems transparency
should be a central issue in the discussion of human factors and
userfriendly systems design.

Systems transparency can be defined in different ways.

1- A transparent system does not hide any of its functions and
mechanisms from the user (you can "look inside").

2- A transparent system does not obscure the user's view on the
problems he wants to solve with the computer (comparable to a
well cleaned window).

. 3- A transparent system appears well structured, consistent and

comprehensible to its wusers; the users can easily build up an
internal model of the relevant parts of the system.

4- Transparency is the degree to which the logical user interface
conforms with the user's prior knowledge or human intuition.
(Notice the reference to the individual user!)

Our later definition will integrate 2, 3 and 4 .

Work with computers

Computers are said to be universal machines which can be
specialised by programming.

A specific characteristic of these machines is that we manipulate
them by language: By means of words we indicate the functions to be
performed and (in most cases) we see the effects that have been
achieved displayed verbally on the screen. Especially important is

2 T

the fact that the computer can comment its own functioning; it can
tell the user how to handle it in what situations for what pur-
poses. So the notions "human-computer dialog" and "human-computer
communication" have come up to characterise the resulting
particular system - user relationship.

But how do people work with computers ?
Let's take the example of office computers.

In most cases computers - as other technologies before them - are
being introduced for rationalisation purposes (cf. BRIEFS 80). The
permanent standardisation and formalisation of work processes in
the past and the reorganisation of work by increased division of
labour have prepared the ground for the advent of computers.

Instead of wusing documents, reports, filing cards and forms the
office worker now sits at his VDU screen entering data, following
programmed procedures and watching the results. For this he has to
learn how to handle the system, i.e., the dialog commands and data
formats. A great part of the experience he had with the office
procedures he performed before is not important any more. The
procedures are incorporated in the programs he's now workina with.

The system's behaviour and by it the surrounding work organisation

is thus determined by the systems designers and programmers.

Users normally only get some minimal information about the
system. In many companies it is common to give them a short intro-
duction in a training session of 2 - 3 hours at the terminal. After
that they certainly do not understand how it works or how to
recover from problematic situations in dialog. Their own role has
been defined without them being able to take too much influence.

This short description of people's working conditions in the
computerised office should have made clear that in many appli-
cations users do not perceive the computer just as a handy tool.
(They possibly rather get the feeling of themselves being tools for
running the machine.)

And how could they - additionally considering the fact that the
system may permanently monitor their performance data at the
terminal: their reaction times, their mistakes, their preferred
function sequences, their break times ... as common management
information systems do.

In our opinion the situation could be partially improved by
transparent systems design, which helps the user to understand the
machine and make use of it. Of course the indicated control effect
cannot be removed by systems transparency as it will be defined
later on.

We'll compare human interaction with computers to an extremely
restricted kind of communication, namely that of formal or even
algorithmic communication. This analogy will explain the vital
importance of systems transparency.

-179-

Natural versus formal communication

The study of psycho-linguistic literature (see e.g. LAING et al.
66, LEWIS 69, GLOY/PRESCH 75) has lead us to a rough model of
natural communication. For representation we use channel/ agency
and means/activity nets, which are special kinds of Petri nets (see
OBERQUELLE 80).

Communication is seen as a complex of social actions for the
purpose of understanding and of allowing coordinated actions. It
takes place by means of a medium, the communication channel (c),
and involves at least two communicating agents (P1 and P2). In the
model we seperate the communication medium from the rest of reality

(the environment E) which surrounds the partners.

Several factors are supposed to influence people's communicating
behaviour. *

P1 P2

i L B e "'""]

| |

' self conven ' l self |

l image tions | l image '

: lC 1 l

: ' | I

' act- messa- act- ‘

| ions i ges ; ions l

|

| |

|

} artner) situa- partne |
odel | tions model |

l | '

T e e v e) A

E —————

A model of communication

(channel/agency and means/activity net
representations combined as indicated below)

channel agency
acti- access/flow
i —_—l
vity

*

Of course this kind of formal model cannot deal with all aspects of
the complicated phenomenon of communication. However, it already
suffices to provide new insights.

-180-

In communication the sender wants to achieve some effect in the
recipient, i.e., he has some underlying intentions which guide the
planning process for his messages.

In order to be comprehensible for the partner he orients along
certain common conventions and a partner model. In natural
communication social norms of conduct and social roles are
reflected in the applied syntactic, semantic and pragmatic
linguistic conventions. Partner models help to predict the
partner's behaviour and expectations.

The statement planning process is also influenced by the sender's
self image, i.e., his self confidence, his conscious habits, the
Tole he considers himself to be in... Apart from knowledge about
conventions the sender uses his world knowledge.

The recipient tries to reconstruct the planning process of the
message to understand it. To comprehend its meaning he has to find
out the factors that influenced the partner in formulating his
statement. This understanding process and the subsequent actions of
the recipient of the message in turn depend on his set of
conventions, self image, intentions, partner model and world
knowledge.

An essential feature of human communication is the permanent
possibility of making the dialog itself and the relationship
between the participants a topic of communication (in so-called
"metacommunication"). Partner models, intentions, conventions etc.
can be discussed and mutually modified explicitly. (This is
indicated by the double arrows between all the components.)

An agent is said to show formal communicating behaviour if all the
components relevant for his behaviour can Dbe described by
mathematical models. Sometimes just a subset of the model
components might be relevant at all.

Formal communication takes place if at 1least one of the
participants shows formal communicating behaviour. By this he
indirectly forces the other participants to adapt themselves and
communicate formally as well, since if they didn't they would risk
misunderstanding.

In many cases formal communicating behaviour of people can be
explained by the fact that they act in certain roles which have
been delegated to them and by which they feel restricted:
Think,e.g., of an inflexible clerk. (For further details see
KUPKA/MAASS/OBERQUELLE 81.)

Delegation wusually covers the handling of standard cases only. For
exceptional cases it must be clear who identifies them as such and
what has to be done. This is no problem in human communication,
where people play roles consciously and are able to leave their
role temporarily to cope with unexpected situations.

-181-

Human - computer communication

The programming of computer systems can be considered as an extreme
form of delegation. Here the relation Dbetween behaviour and its
preconditions is not Jjust formally but even algorithmically
described. The delegation of tasks to computers requires the
previous formalisation of the delegated work processes.

Designers and programmers of interactive systems do not only
delegate functional behaviour (problem solving functions) but also
communicating behaviour (how to handle the virtual problem solving
machine by means of dialog functions). They design virtual
communication partners for the users. This is why we propose a new
paradigm which characterises computers as communication media with
formal communicating behaviour (see KUPKA/MAASS/OBERQUELLE 81 and
MAASS/OBERQUELLE/KUPKA 82).

In the normal systems design process the designers assume certain
user characteristics, i.e., they have certain - not extremely
realistic - user models in their minds which get formalised and
implemented by dialog conventions.

Later, the naive non-programming user has to get on with these
restricted communication conditions. In his dialog with the
interactive system he must adapt to the formal models which do not
necessarily match his real needs and expectations and must follow
the conventions.

Only those users who are able to re-program the machine can
theoretically modify the implemented user model to their own
liking. 1In practice, however, this kind of machine adaptation will
hardly ever be done because of the complexity of computer systems.

We conclude:

Computer systems are extremely inflexible virtual communication
partners. They force the human user to adapt to a strictly formal
communicating behaviour. For this purpose the user has to build up
a suitable system model in his mind which helps to predict and
explain the system's behaviour.

Systems transparency

In our opinion transparent systems design can help the user in this
situation of compulsory adaptation.

We define transparency as follows:

A transparent system makes it easy for users to build up an
internal model of the functions the system can perform for them.
This includes the problem solving functions as well as the
dialog functions.

-182-

Its logical interface conforms with the users' prior knowledge
about the problem domain and with human intuition (i.e.,how they
are used to coping with certain situations in communication).
The effort of handling the system (by dialog functions) must not
disturb the users' problem solving processes.

This definition is confined to the users' immediate tasks. A user
understands the virtual machine he's working with, but he does not
necessarily see through the other functions it has, for instance,
for his manager or for the personnel division of his company.

So, what makes a system transparent to its users ?

Obviously, a system which is transparent to one user need not
necessarily be transparent to others as well. The ability of
understanding the system depends on the user's knowledge and
experience. (We can thus make a given system transparent even
without modifying it - Jjust by an extensive information and

training of its users.)

However, referring back to the components of our communication
model we can derive some general guidelines for transparent design
of human-computer communication.

Dialog conventions (syntactic, semantic and pragmatic) should appear
as natural as possible to the user.

* For problem solving functions use the language of the application
field or technical terms that are common to the user.

* Allow abbreviations for all kinds of functions.

* Avoid artificial expressions that are "natural" only to the
designers (e.g. 1in error messages, but also for the reaquired
commands) .

* Allow underdetermined commands (incomplete parameter speci-
fication) and let the system ask back.

* Allow metacommunication, e.g. questions for available functions
and obligatory formats, choice of different interaction modes,
modification of defaults, definition of complex commands
(procedures) .

* In particular, allow questions at any time.

A special problem is caused by the fact that the user is rarely
confronted with one consistent interface: Computer systems consist
of a number of different programs - like operating system, editors,
compilers, application packages etc.. These subsystems have been
designed independently by different people who have each
implemented their own rather individual conventions.

* Provide a consistent user interface: similar user commands for
similar functions, consistent conventions concerning abbrevi-
ations etc., consistent reactions to user mistakes...

* Make the system "have a séfPSEmage“ in that it is able to explain
its behaviour, its conventions, its user model..

Apart from systems transparency there are also other requirements
for better systems design that can be explained by the presented
concept of formal human-computer communication. For example, the
need for participative systems design, or even "users' design" (cf.
EASON/DAMODARAN 81): In our terminology it means that the users get
the opportunity of designing the system's user model themselves,
and of making the system use their own conventions.

User participation is started being realised by now and if it is
practised the right way it has undeniable advantages for the users.
But there are also serious fundamental disadvantages in that
systems designers profit from the worker's Jjob experience to
computerise work processes as far as possible - with the effect
that the worker's gqualification may largely become superfluous and
with it the whole job.

Obviously, userfriendly design and user involvement alone are not
sufficient to guarantee humane jobs and cannot reduce the function
of computer systems to being simple tools for its users. Too
significantly does their introduction affect the working conditions
of the persons concerned.

Literature

BRIEFS 80 Ulrich PRriefs:
"Arbeiten ohne Sinn und Perspektive ?

Gewerkschaften und 'Neue Technologien'"
Pahl-Rugenstein: Koeln, 1980.

DEHNING/ESSIG/MAASS 81 waltraud Dehning, Heidrun Essig, Susanne
Maass:
"The Adaptation of Virtual Man-Computer
Interfaces to User Requirements in Dialogs"
Lecture Notes in Computer Science no 110,
Springer: Berlin, Heidelberg, New York, 198l.

EASON/DAMODARAN 81 Ken D. Eason, Leela Damodaran:
"Design Procedures For User Involvement
and User Support",
in: M.J.Coombs, J.L.Alty (Eds.):
"Computing Skills and the User Interface"
London: Academic Press, 1981
pp. 373-388.

GLOY/PRESCH 75

KUPKA/MAASS/
OBERQUELLE 81

LAING/PHILLIPSON/
LEE 66

LEWIS 69

MAASS/OBERQUELLE/
KUPKA 82

OBERQUELLE 80

-184-

Klaus Gloy, Gunter Presch:
"Sprachnormen",

Vol. 1-3,
Frommann-Holzboog: Stuttgart, 1975.

Ingbert Kupka, Susanne Maass, Horst Ober-
guelle:

"Kommunikation - ein Grundbegriff fuer die
Informatik",

Mitteilung Nr. 91, IFI-HH-M-91/81, 1981,
Universitaet Hamburg, Fachbereich Informatik.

R.D.Laing, H.Phillipson, A.R.Lee:
"Interpersonal Perception",
Tavistock: London, New York, 1966.

David Lewis:
"Convention - A Philosophical Study",
Cambridge/Mass., 1969.

Susanne Maass, Horst Oberquelle,
Ingbert Kupka:
"Human-Computer Communication :
Towards a New Understanding",
in: Najah Naffah (Ed.):
"office Information Systems",
North-Holland: Amsterdam, 1982,
pp:551-561.

Horst Oberquelle:
"Nets As a Tool in Teaching and Termino-
logy Work",
in: Wilfried Rrauer (Ed.):
"Net Theory and Applications",
Lecture Notes in Computer Science Vol. 84

Springer: Berlin,Heidelberg,New York, 1980,

pp.481-506.

-185-
WHAT KIND OF "DIALOGUE"™ IS IT WHEN WORKING WITH A COMPUTER ?

Léonardo Pinsky *

1. Introduction

What is one to call the interaction between a compﬁter and
its operator ? Considering the range of tasks énd the wide assortement
of users that perform them , the answer to this qﬁestion is not immediately
apparent. NeQertheless"Dialogue ", evoking a characteristically hﬂman
mode of communication, discourse between two people, is very widespread

Is it a useful or a confusing term ?

From the prescriptiQe point of view Smith (1980) has Urged
many , seriods objections to the argument that natural 1angﬁage oﬁght to
be the model for the design of interactiQe systems. NeQertheless, (a)
some systems haQe to deal with information in a natural language ,
and (b) to enable operators with little or no formal training to use
computers, interaction facilities must be very similar to a natural
langﬁage.

One may also wonder from the descriptiQe point of Qiew how
adeqﬁate "dialogue" is for the actﬁal interactions between users and
computers ? I will consider this question in the context of a particﬁ—

lar working situation, data entry and coding on line.

The research described below was condQcted in two stages: (l)an
analysis of operators work using a first system (Pinsky et. al.

1979), and (2) experimentations with a group of operators during the de -

sign of a new system .

* Laboratoire de Physiologie du TraQail et d'Ergonomie.

Conservatoire National des Arts et Métiers, Paris, FRANCE.

-186-

2. Principles of the data entry-coding system

Information collected in an investigation has to be coded in
order to build a data base for further statistical operations.
People had filled out a printed form (fig. 1) containing "closed" ques ~
tions (like 15 in fig. 1)and "open" ones (like 12 and 14) concerning
their profession, the name, economic activity, and address of the firm

where they work, and so forth

LI — - - e S

PO0R S BABIREE 56 03 (LS AT

@ Vous exsrcez une activité professionnelie | réponder aux questions 12 & 18,
\ 51 vous aider un membre de voira famiile dans son ravail, méme b temps periel |
| # vous $1as 8ppIENt S0US CONIBT Ou SLAGIAITS rémUNrd

® Vous n'exarcez pes sctusiiement d'activité professionnelis ou vous Btes en chimage : ripendes & i questiss 6.
@.*u-‘“ubﬂﬁ—m“m Fl -
o i Coror_ o ey G e — Affachs da clisellearn
desainsrews Sinsins on Moctriond, ngloiess ch » -
e o Cecarirage ampiod 8 cmpeshat, e _..__w
0 Addos-vous un marmies G votrs fomile dune son wewed 1 os O
(Expiemetion sgricols. erussnate . commerce . protession Wbérsle . ot | 1&6
Empitersa-voom g9 miaids ,’..,

¥ comorm

Exercez-vous cetts protession comme ey
. oe apprarss
* St v mm“'mD'— "'"f""
e &une paissaon Vateshs. o)
® Ao el ron soerd earyees. ardert ou ous et

| BRI AT o L Figure 1
il f:‘ .-"..':‘-'-‘-"3\"-'. shanisrs omrepsess | uﬂ‘

@ OU TRAVAILLEZ VOUS 7 B ACTVITE oo oot
) ADRESSE do vowe liou do ravel Sovee s Emprtes comamns 0 o an gres abioston & -

A e Lawwut 3..’.,(‘

Commura <1000 .nu--vu.
b "'w " [T e —

qun-—--mr.-—- '
i st a1 o vt Sl 9 o g |
L A

ul Commune ot aby
Lt il Pour Paris, Lyen. Merseute. précsees [srrendiossmert)

@ POUR LES SALARIES

[] : @

pubie EDF SNCF. o) ou milinabe
. DaRmEOE B g 8; e Lrorgis sorwiins G o, rsevn P11 ok
L vl quetd (M1 92,93 TA 0P, 00) (] 3 A 900 seess heaesien

o tmotons 04 ———

o Techmicien. dessinateur Os @ asthe, : -

. e 3 Dl e vous Senation prinsipals done | enwopriee o0 Fongoniame

- - @ngeant des. @0 metrise ou des ar

qur vous empiow

© Dusciaus pérdral ou un do es sdjors Girwots 1

. " Hmsnasace 3

" i o .'::::u-m— ou compuatie. 1
.

.

The operator has to enter the precoded answers and to code those in ordi-

nary language using the interactive system. The interaction style 1is to

fill in the blanks of a display form on the screen (fig. 2), to transmit

the information to the computer, and to wait for responses.

RRLGE FOR MODE O MAJ . RECH 0
PtW20 -D-39 -C- 170 DET AWS 1M 001 LOG 04 GO po-
1 PROTTSBION DIRECTEUR ADJOINT i ’ e ”:;;:;“: X
i 14A-ADRESBE LTINO- 1 -RUC R DAVOUY L
display diaed e prids Fyure ¢
140-85 CAISSE RECIONALE CREDIT AGRIGOLE ;
14C-AL BAMGUE : :
form 14D-ADRESSE ETINO- 140-RUE
14D-COM YOS LADeREp o
15A-CPF 8 ISC-FONC 1 P75 9916 8AU orA Pup
01, CAISSE REGION ~CREDIT AGRICOLE 018 R' DAVOUT 8943
02 CAISSE REGION CREDIT AGRICOLE {10 AV EIFFEL 903
03 CAISSE = REGION CREDIT AGRICOLE B BACHELAR 8903
04 CAISSE RECION CREDIT AGRICOLE 103 AV. DRAPEAU 893
responses 05 CAISSE REGION - CREDIT AGRICOLE 089 AV HUGO 8903
06 CAISSE REGION ~ CREDIT AGRICOLE 013 P DARCY 2903
07 CAISSE REGION CREDIT AGRICOLE R JOLY 8903
of the 08 CAISSE REGION CREDIT AGRICOLE 004 PL BANGUE 8903
09 CAISSE REGION CREDLT AGRICOLE - D60 R AUXONNE 8903
10 . COMMISEI REGIONAL AGRICOLE' NS R RCNAUD 9102
computer : BES e -

-187-

The declarations entered by the operator are treated sequentially by
the computer:

- it searches for the firm in a catalogue, if it's found, the
economic activity of the firm, its legal status, size and address
are automatically coded. Otherwise,

- it searches for the firm's economic activity as entered by the
operator in a file of prec-established designations (about 4,000).
If. it's found, it is coded; if not, either lists of designa-
tions containing recognized words or messages in a natural lan-
guage are sent back to the operator.

- In the same way, the computer searches for the firm's address.

- For the profession, the computer uses the description entered by
the operator as well as other picces of informaticn (e.g., economic
activity, wage-earning status, professional category, duties, size
of the firm...).

It searches first in a file of pre-established designations (about

9,000); but unlike the situation with respect to economic activities,

the correspondence between the description entered by the operator
and the designation in the file need not be word-for-word. The
designation REPAIRMAN for example, is valid for all job titles be-
ginning with this word (REPAIRMAN, TELEVISION; REPAIRMAN, WASHING

MACHINE; REPAIRMAN, ELECTRICAL, etc.). The other pieces of infor-

mation are used as variables for decision tables.Which ones will

pe employed in a given case depends upon the profession in question.

If a designation is found and if the algorithm of the decision

tables succeeds, a code is assigned; otherwise, messages are sent

back to the operator. The codes for economic activities and professions

correspond to the categories that subdivise the designatiorn files .

-188-

If a code is assigned a brief description of the category's contents is

sent back to the operator for his approval.

3. Interaction anal&éiéAfrom>£hé operator's point of view

The analysis is based on two types of record:

- observable behavior: video tapes were made of the operator's actions

(filling in or modifying the dgisplay form), his eye movements (to determine

when he was looking at the screen, the display form, or the keyboard), and

the computer's responses.

-verbal protocol :tape recordingswere made of the operator's remarks both while

executing the task and afterward.

The interpretation of the data so collected requires extensive discussion with

the operators. Close cooperation with them, then, is an essential feature of the metho

In what follows, I seek only to sketch a framework for the analysis.

By examining the circumstances in which something goes wrong during the inte-

raction, we may hope to learn more about the interaction and the operator's cogni

tive activities.

It often happens that the operator does not understand the computer's

response or thinks it is improper or even is lost . This is especially evident

when considering the verbal protocol. Let us give a few examples.

(A)

Operator: profession= Doctor of Urology

economic activity= Hospital

Computer: DOCTOR OF MEDECIME..., DOCTOR... (WITHOUT A PRIVATE PRACTICE)
~-SPECIALIST (SURGEOM, OPTHAMOLOGIST...) ENTER THE SPECIALITY
-HOSPITAL STAFF DOCTOR(ARMY DOCTORS EXCLUDCD) ENTER C-SAOL

3 -NON-HOSPITAL, STAFF DOCTOR (ARMY DOCTORS EXCLUDED):
COMFANY DOCTOR, SCHCOL DOCTOR, COMSULTING DCCTOR ..ENTER C-SA02
-INTERN ENTER C-SA23

ATTENTIOM: DOCTORS OF DEMTAL SURCERY AMD
ORTHODCHTISTS ARE DENTISTS ENTER C-PL23

Verbal protocol:"Onc has to "enter the speciality"...

I'll type "hospital staff doctor". i

(Resecarcher: Didn't you enter the speciality ?)

I did , but they didn' t accept it."

-189-
(B) Operator: profession = inspector

coded economic activity = 9004 external administra-

tive services other than

economic or financial:

Computer: PIVOT WORD "INSPECTOR", SECTION SUPERVISOR (PUBLIC DUTIES)
-INSPECTORS, POSTAL ENTER C-FP21
-INSPECTORS, TREASURY, CUSTOHS, TAX CHTER C-FP22
-INSPCCTORS, STATE (VERY RARE) EMTER C-FP11
-INSPECTORS, CIVIL AVIATIOH ENTER C-TDOZ
-0THERS ENTER C-FP24

Verbal protocol: "I think it ought to take the economic activity

code into account because it has returned "inspectors, treasury, customs,

tax," when that is a part of the entry"

(C) Operator: economic activity = food manufacturing

Computer:

6101 SUPERMAKET

6102 CROCERY STORE

6103 SUPERMARKET COMPLEX

6211 INDCPENDENT RETAIL CROCERY STORE
6221 FRANCHISED RETAIL GROCERY STORE
6212 SHMALL INDEPENDENT SUPERMAKET

6222 SMALL FRANCHISED SUPERMAKET
COMMERCE, WHOLESALE: CLASS 57, CERTAIN AGENTS...(BROKER, COMMISSIONER,) are in CLASS €0

COMMERCE, RETAIL: CLASS 61 FOR THE LARGE STORES... AND CLASS 62 FOR SMALL AMD SPECIALIZED
STORES.

***#End of this designation.
Verbal protocol: "This is for...commercec ?!
Onc would have expected something about production...
strange!

If I enter '"production" will it be the same ?2!"

(D)

(E)

-190-

1. Operator: profession = doctor of urology

Computer:
DOCTOR OF MEDECINE..., DOCTOR...(WITHOUT A PRIVATIVE PRACTICE)
-SPECIALIST (SURCEOM, OPHTAMOLOGIST...) ENTER THC SPCCIALITY
-HOSPITAL STAFF COCTOR (ARMY DUCTORS EXCLUDED!. ENTER C-SA01

-HON-HOSPITAL, STAFF DGCTOR (ARMY DOCTORS EXCLUDED):
COMPANY DOCTOR, SCHOOL DOCTOR, CCNSULTING DOCTOR... ENTER C-SA02
-INTERN ENTER C-SA23

ATTENTION DOCTORS OF DENTAL SURGERY AND
ORTHODOHTISTS ARE DENTISTS ENTER C-PL23

Verbal protocal:"I suppose he's a specialist since he's a doctor of '"urology".
And it tells me to enter the speciality (laughs). I 11
key in 'urologist"."

2 Operator: profession = urologist

Computer: sag1 HOSPITAL STAFF DOCTORS (HAVIHNG MO PRIVATE PRACTICE : ARMY DOCTORS EXCLUDED)

Verbal protocol:"It's strange that it doesn't respond with“specialists"
I don't understand."
1. Operator: profession = professor of textile design

economic activity = technical instruction

Computer:
POST SECONDERY, MOM-UNIVERSITY INSTRUCTION
JUMIOR COLLECE, TECHNICAL COLLECE, TRADE TRADE SCHOOL, AGRICULTURAL COLLECE,...
THE ECONOMIC ACTIVITY CODE IS INSUFFICIEMT TO DETERMINE THE INSTITUTION IN QUESTION .
JUNIOR COLLEGE} EXCEPT IMDUSTRIAL ARTS COLLEGES (IAC) ENTER C-ENOQ
IAC AND OTHER TEACHING INSTITUTIONS ENTER C-ENO7

Verbal protocol:"I am going to enter "and other teaching institutions."

The respondant didn't specify whether it is a junior college ."
2. Operator: economic activity = EN ¢7

Computer: UMKNOWM ECONOMIC ACTIVITY CODE

Verbal protocol: "Was I supposed to enter it under the firm's name ?
(Researcher: No ...the confusion comes from the fact that your message pertains to
the profession.)
Should I enter it there, then? (he puts it in the profession zone) But it's

not a profession, is it? I don't understand."

-191-

(F) 1. Operator: profession = inspector, business frauds
coded economic activity = 9004 external administrative
services other than economic or

financial....

Computer:
PIVOT WORD "INSPECTOR", SECTIOM SUPERVISOR (PUBLIC DUTIES)
-INSPECTORS, POSTAL ENTER C-FP21
-INSPECTGRS, TREASURY, CUSTOMS, TAX CHTER C-FP22
-INSPECTORS, STATE (VERY RARE) ENTER C-FP11
-IMSPECTORS, CIVIL AVIATION ENTER C-TDO2
-OTHERS : ENTER C-FP24

Verbal protocol:" Ahh! It's "others." "

28 Operator: profession = FP 24

Computer: (p 4, oTHER PERSONMEL UMDER CATEGORY B OF PUBLIC CFFICE (ADMINISTRATIVE

SECRETARILS; INSPECTORS, WORK, TRADE,...)
Verbal protocol:"...(silence)
(Researcher: Does thay surprise you ?)
Mo...but, after all! A moment ago, it said "others" and then ...Still, if that's
the way it works! One has to read it in relationship with the message

Just received. Is that it? Mo , hecausc rcad like that, it is "other personncl

of categery B." one asks oneself, "what's going on here!" Still, one must

remember that...("Others?") Exactly"

For want of space I am unable to enter into a detailed analysis of these
exchanges. It is easily seen, however, that the following conclusion may be drawn:
if the operator is troubled by the responses cf thé computer , it is because he expects
it to follow a principle of exchange that one might call, borrowing an idea from
Grice (1975), the "cooperative principle." I would suggest some rules the operator
assumes that the computer respects:
(a) Take accountot all the informaticn transmitted.
Violations: (case A) some information is not taken into
account; (case B) information already transmitted is re-

quested again.

(b) Be pertineﬁg?z—
Violation: (Case C) a response is given which has little
bearing on what has Leen transmitted.
(c) Be logical.
Violaticn:(Case D) a failure to take the preceeding step
into consideration.
(d) Give all the information necessary in the exchange.
Violations: (Cases A and B) failures to indicate that all
the information has rot been used.
These rules are entirely similar to what can be described in human communication.
I can connect this fact .to features of the interaction :
- The result of the operator's action (i.e., the computer's
response to the transmission of a display form) is unkown for him. As a matter
of fact, he does not know the contents of the files consulted by the computer .
For the operator, therefore, it is not as if he were simply giving orders to a ma-
chine. He is faced with a kind of interlocutor. The computer's responses are utterances,
either explicit ("The economic activity code is insufficient to determine the
instituticn in question.") or elliptical (as when, for example, it produces

lists of designations). Moreover, these utterances were initially composed by real

interlocutors for the operator (i.e., those who developed the economic
activity and profession classifications in order to transmit information.
to him and to compel a certain action.
- But if the interaction ressembles a conversation
in some respects, it is quite different in others: the computer's responses
are fixed and sometimes are not well suited to the situation; they are
produced in a mechanical way; the means available for interrogating the compﬁter
are poor(consisting only of an ability to modify the content of the zones).
The operator, indeed, confronts a machine which responds to his orders.
Even so, he expects the machine to be reliable, régular , systematic,

The interaction then has an ineradicably double nature: it is at once both

conversational and mechanical.

It is with this reservation that I would speak of "dialogue".

=

-193-

Motwithstanding the reservation , one must not overlook the fact that the operator

supposes or seek rules or, at the very least, regularities in order to

define his conduct. When the rules are violated:

either the dialogue malfunctions (in ways ranging

" when the anomaly is serious (case E) to

from the "pathological dialogue

a simple incongruity ("irreqular dialogue") when the breach of rules is

slight);
- or the operator, taking it for granted that the

response is consonant with the rules, will seek to discover something im-

plicit in the response which gives meaning to it (case F).

On the basis of this analysis, 1 corclude that the interpretative acti-

vities of the operator are not only of a semantical character , but equa-

11y of a pragmatic nature. The computer's response is not a simple trans-

mission of information, because it takes place in the context of whay

one can call, following Wittgenstein, a language game of a particular kind.

Work load and system design

Pathological or irregular dialogues lead to an increase in

work load, as one sees by looking at certain indices that we are able to

precise : parasitical supplementary activities, misleading induced rea-

soning, increasing burdening of the Memory,:,:An analylisis ofthe sort that

I've sketched enables one to make certain prescriptions. I will call that

cts conversational incom-

feature of the system which leads to these effe

petence. For the system that we have studied we can define precisely the

elements of this incompetence and seek ways to reduce it .

These latter take several forms:

(a) editing and presentation of the responses (Cases E and F)

(b) modification of the files of pre-established designations(Cases A and B)

(¢) modification of the search algorithm for the file (Case B)

(d) modification of the way in which the lists are constructed (Case C)

(e) introduction of a marking operation for the display form

of words and zones used by the computer in its search.

-194-

5. Conclusion

I have examined here only one aspect of the oprator's activity ,
that concerning the dialogue with the computer. This dialogue is only a
means for realizing the codification of information. As I've demonstrated
in a previous study (Pinsky et. al., 1979), this codification is not. a sim-
ple categorization; it is an authentic problem-solving process.
The question arises as to what kind of connection exists between this pro-
blem-solving activity and the dialogue with the computer. The classical
studies of problem-solving (from Piaget to Newell and Simon) have only con-
sidered what one might call the operating logic of the subject and not the
interaction phenomena with the other participant of the dialogue. On the
other hand, studies of human communication have been little concerned
with the pursuit of a cognitive objective or the solution'of problems

introduced by constraints other than those of the dialogue.

As in every work situation, the one we have considered above is not
"psychologically pure", and its analysis requires that one have recourse

to several scientific disciplines.

In the field of computer design considerations of the problem solving activity
suggests the need to build a second type of competence into computer systems;
a competence which aids the operator in solving problem.

But this is another subject, which I must leave for another occasion.

References

Grice H.P. 1975 "Logic and Conversation", Syntax and Semantics, vol. III, Speech Acts
y

ed. P. Cole and J.L. Morgan , Academic Press,

Pinsky L. Kandaroun R., Lantin G., (1979) Le travail de saisie-chiffrement sur
terminal d'ordinateur, coll . Physiologie du
travail et d'Ergonomie du C.N.A.M,n%65

Smith H.T. (1980) "Human- computer Communication'", Human Interaction with Computers

ed. H.T. Smith and T.R.G, Green, Academic, Press

Wittgenstein L. (1961) Investigations philosophiques, Gallimard, Paris

-+ 0 TE NS 5= S TN B GE BN SN BN B S A 'R B N B B BN BN B .

-195-

Inside and Outside the system,

Problems of Communication, Interaction and Understanding in a

/") Programmable Environment.

dr. A. Dirkzwager

Vrije Universiteit Amsterdam

Summary

The inside of a system looks very different from its outside.

Open up the hood of your motorcar and you see what I mean, or look
behind the back-panel of your washing machine to discover the works
of wires, switches and micro electronic components. Normally we are
shielded from the complications of the inside of such systems and we
can live with them and use them quite comfortably staying at the
outside. This is not only true for artificial, technical systems but
also for natural systems. We can have very interesting and meaningful
discussions with a fellow-human being without bothering about firing
neurons or the internal chemical processes that keep us alive and
lively (if we would we probably would not be able to understand the
meaning of the ongoing discussion any more). The same is true if we
consider larger systems like an army at war where we can abstract
from the internal individual soldiers with their guns, ammunition
and technical equipment if we consider strategy and tactics, or
systems like a large business organisation with its external policy
which can be understood without detailed knowledge of its internal
structure and functioning. The importance of the systems concept is
that it draws a sharp distinction between the inside of a system
and its outside such that we may either focus our attention on the
internal functioning of the system and abstract from its outside
meaning or focus our attention on the outside functioning and the
outside meaning of the system without bothering about the internal
specificities.

Communication is a process in which (at least) two systems interact

in a common environment. It can be observed and understood from at
least three different viewpoints, and at different levels. Two
viewpoints take their position inside one of the communicating systems.
In that case the other system is at its outside, in its environment.

For instance man-machine communication may be designed and studied

-196-

from the perspective of the machine, man being part of its environment
providing inputs and accepting outputs, or from the berspective of the
man, under which perspective the machine is part of his environment
reacting to his inputs and providing informative and to some extend
useful output (in the limiting case: garbage). A third viewpoint is
possible, that of an outside observer who considers the communication
process as a whole, but as soon as he distinguishes two different commu-
nicating systems in a common environment he is bound to be biased by
focussing his attention at one of the systems, and (depending upon the
language choosen to describe this "fore-ground-system") by choosing

a level of description for the interaction. In a man-machine system
for instance he may describe the interaction either as an exchange of
physical stimuli and responses or as an exchange and interaction of
meaningful concepts and arguments. Much confusion is caused if one

is unaware of differences in viewpoint and in focus of attention or

if one tries to entertain two different viewpoints at the same time:
it is like the perceptual background-foreground fenomenon: one can
switch one's perspective, but it is impossible to see both sides of
the boundary as the intended foreground figure at the same time.

The case for the "outside observer'" is not very strong as it
implies a distinction between this observer as the intended system,
and his environment in which the two communicating systems are
placed. The observers viewpoint is a priviledged one and the problem
is shifted to the question how communication is possible with
another observer, who has his own priviledged viewpoint that can
not be switched without giving up his unique observing position. So
the question which one of two interacting systems is regarded as the

intended foreground system stays crucial.

Understanding is some kind of synchronisation between two commu-

nicating systems. When one system can reproduce the input—output
relations of the other system it is said to understand the other
system; a system shows to understand the other system when it responds
and behaves in ways expected by this other system. In that way not
only people can understand each other, but a man can understand a
machine and we may even say that a machine "understands" its operator
(or does not "understand" someone who does not know how to handle it
properly, for that matter). The concept of "understanding' rests upon
a strict distinction between two systems and a confusion of elements
in one system with elements in the other system (which may be quife

different) by calling them 'the same' or by perceiving them as equal,

SY A BB B B S EE s
B U B B aE A0 B S B B B . BN B BE e

-

-197-

as if it were possible to do so with concepts under two different
viewpoints.

"Understanding" can be described and realized at different levels
and with different degrees of precision and detail depending upon the
language used to describe the communication and the systems participating
in the communication. A modern washing machine "understands' the
language of the dials and switches that select a certain programme.

It is a closed system that can be easily understood in the outside
world at least as long as it is not broken. When it is broken its
identity as a closed system is lost: it does not react any more as a
proper washing machine and probably it produces funny noises from its
inside that upset the outside world. In that state it "understands"
only the language of pliers, screwdrivers and soldering irons and

in its behavior (or non-behavior) it "speaks'" a language that only

the mechanic can understand. The machine has to be opened up and some
qommunication in this lower level language is necessary to have it
repaired and restore it as a closed system that can be understood in

a high level language and that can be used without bothering about its
internals. It is a matter of good design that machines are closed
systems with a transparant interface to the outside world, transparant
in the sense that its behavior can be easy and completely understood
in a metaphorical way using common concepts from everyday language
without knowing about its internal structure and functioning that

can only be understood using scientific or technical language: in

that respect it should be a closed black box. If it is opened up

for repair or maintenance the same principle holds. What shows should
be a set of black boxes with transparant interfaces that is
intelligeable to the maintenance engineer who speaks the language at
this level. At still lower levels the internal physics of the components
as a whole might be only understandable to the specialistic scientific
engineer, who is not necessary the most knowledgable in using the
system.

To program is to use tools and machines (components) available in the
environment to construct a new machine which serves certain purposes.

A programmable environment offers the tools and components to do so.

The process would be quite unmanageable and incomprehensible if not
different system—-levels are distinguished and kept clearly separated.
(The development of) a modern computing system is a good example. It

started with computing machines in which the programs were wired in

-198-

at plugboards. Using the tools and components of this (hardware) level,
machines were build were programs could be input by setting switches

or reading punched tapes or punch-cards containing binary code that
was kept in core: the stored program computer. In this machine all

the wiring (at least most of it) was inside the black box. Soon this
machine was programmed (in binary code) in such a way that it became
programmable in a mnemonic code, assembler, which was much easier to
learn. The boundary of the system was moved such that the binary

code moved inside the black box and the interface became more humane
Still one had to translate ones algorithms, formulated in flow cards
or any other easily readable language, into a quite unreadable code.
With the design of compilers for "high level programming languages"

(in assembler-language) a machine with a wider boundary was constructed
as the coding-part of the process was also put in the black box which
became more humane and easier to program; a 'general purpose' computer
to develop new machines for ones own 'special' purposes. With the
uprise of operating systems and jobcontrol languages (often defined
and constructed in higher level programming languages) the boundary of
the system-as-used moved further such that less technical details on
its inner working should be known and such that its outside boundary
became more transparant to the user. In the mean time the scientists
and technicians worked on the black boxes in the black boxes inside
the system redesigning and replacing components to make the whole

more efficient, faster, smaller, more powerful and cheaper. That is
nice but of no concern here as far as it does not change the functional
outside of the system, the "language'" we have to use to understand and
to use it: no one cares if the telephone-connection is realised by
complexe mechanical relays or by electronic computers as long as the
connection is realised reliably in reasonably short time (may be we
should care, but that is another topic).

The view presented so far pictures the development as seen from
the inside of the system. The intended system in the focus of our
attention is at the machine-side of the boundary that forms the
distinction between man and machine. As a consequence the perspective
is that machines generate a demand for human work (wiring program-
plugboards, coding in assembler language, punching tapes and cards)
and that this human work is taken over in the next step by automation
(it is absorbed by the next layer of the black box). The perspective
of course leaves eventually little room for man's work as it is to

be done automatically as soon as it is well-defined and it becomes

~

-

-199-

well defined as soon as its function in relation to the machine is
clear. The crux is that from this viewpoint (the machine as the
intended system) the environment is seen as machine-like and so is
man in this enviromment if we focus our attention on the machine-
part of the man-machine distinction.

Quite another perspective results if man is the intended system
of our man-machines distinction. Then the machine becomes the
secondary system of this distinction: it is seen as (part of) man's
(programmable) environment. Under this perspective the emphasis is
on the meaningful information processing by man, the distinctions
he makes and imposes on his environment, the relations he discovers
and constructs such that the behavior of things and machines in
his environment become meaningful in the context of hiw own cognition
and architectural activity in this environment. From this viewpoint
not the machine but the man is the intended black box, the system
that expands its boundaries. The emphasis is not on the syntax and
the physical implementation of "information'" processing, but on the
semantics and the cognitive meaning, on man as a creative thinking
and constructing creature who molds his environment according to
his ideas and conceptions in such a way that these ideas and conceptions
can be recognised in the environment by other subjects who are
consciously living in it.

Originally the boundary of this system called man roughly coincides
with his skin, it is extended as soon as man starts to use tools; the
man and his tool is one system that operates upon the environment.

By the invention of writing the boundary further moved: physical
inscriptions are made and become meaningful not only as an extension

of man's memory or as a facilitation of interhuman communication but

also as a tool to enhance his information processing capability:
extensive calculations become possible on paper using the right
notational system; concepts, ideas and relations between them become
understandable by making schematical drawings. Each expansion entails

an extension of the original system called "man" with additional
concepts, intellectual skills and technologies that change the contents
of the original "black box" such that a more powerful "black Box"
results. Subjectively it is often a difficult, sometimes painful process.
of adaptation to new technologies, of becoming litterate and cultivate.
This process however can also be understood - from the viewpoint of man
as the intended system - as a process of assimilation and interiorisation

of external functions, moving the boundary of the self such that these

-200-
external possibilities become part of it. One has to become familiar
with the instrumental facilities to such an extend that one preceives
the activity of the man-machine system one is part of as an activity
of one-self: not the pen writes but the writer, not the car follows
a certain road but the driver, not the agenda remembers appointments
but its owner. This implies often that new conceptualisations have
to be formed and that initially alien concepts have to become a
natural part of the self. They imply a displacement of the boundaries
between "self" (including ones own well understood environment) and
"alien" (an external system, understood and not to be trusted, that
largely determines ones duties and ones fate). Often this is quite
difficult for grown ups who have a well-established selfconcept and
knowledge about the world they are used to. Children much more
naturally accept a new environment and grow into a natural feel of how
to use and work with machines and artefacts available.
Young adults are often better able to survive in the competition
than older ones, because they are better able to understand new

developments as they are not hindered by old established concepts

and distinctions. For this reason some of these changes may take at least

one generation. Primary and permanent education should be of help
but often the educators themselves are at a loss in the rapid
development and they might be a hindrance by unconsiously imposing
their attitudes and reactions which are based upon out-of-data
conceptualisations. This implies from a systems—design point of
view that one should carefully design the outside of the system
in a way that it does not need "educators'" for its use and that
eventually even the educators can understand it. Programming languages
and programming systems define such systems if they are well-designed.
A programmable environment is defined by some programming
language which is a boundary or interface that seperates man from
this environment which he does not need to understand beyond this
boundary, the programming language). With natural environments
(including the physical world, other people and the artefacts they
made) learning the language is quite a problem leading to the
development of sciences and technologies. With artificial environments,
for instance computer(based) systems, the interface should be
designed in such a way that learning the language is no great problem.
It should be such that it is an almost natural means to formulate
things one wants this environment to do. Concepts and constructions
used by man should be legal concepts and constructions in this

programming language, at least as long as they are not contradictory

- 4

-201-

or too complex to be understood. Not all such legal concepts have to
be understood by the environment immediately, but every legal concept
or construction must be explainable in legal concepts and constructions
that are understood by this environment. This "explanation" should

be possible in the programming language in terms of concepts and
constructions that are easily understandable to man acting in this
programmable environment. On the other hand the programming

language should provide the possibility of constructing a strict
boundary between the original concepts and constructions and their
explanation (examples are macro-calls and macro expansions, procedure
calls and procedure definitions, methods of structural ("top-down')
programming, progressive refinement, procedures of sending messages

and recieving reactions from objects and the definition of these
objects, labelling and naming of variables and their implementation
with memory addresses).

The result of man's programming activity is twofold. On the one hand
his original concepts and constructions (algorithms) are implemented
in the programmable environment, the boundary between them and their
explanation in the programming language define a new environment that
can be understood in terms of the original concepts rather than in
terms of their explanation or expansions in (machine) code, the (new)
environment is more humane and transparant as the (lower level)

code (even if formulated in higher-level-language programs) becomes
invisible in the background. On the other hand this expansion of

the environment with new information processing capabilities may

be quite incomprehensible to anyone who does not, in his own language,
understand the original concepts, constructions and intentions of

the programmer. Digging into the code or the procedure definitions

is hardly a solution as looking at the internals of a black box

hardly makes its outside function and meaning any clearer. One should
know beforehand what ideas are implemented. What is needed is a piece
of the programmers mind, the context that gives meaning to the
concepts, constructions and ideas he implemented. It is the programmers
responsibility to make his programs humane, that is to say easily
understandable to other people sharing the same cultural background
(using suggestive names instead of incomprehensible code numbers is one
method). It is the responsibility of education to provide this cultural
background so that anyone coming into contact with these programmable/
programmed environments has the necessary cognitions to understand
them and make interhuman communication about them (a.o. with the

programmers) possible. It is the responsibility of programming-

-202-

systems designers to develop languages that facilitate this interhuman
communication. From this viewpoint the power and efficiency of the
implementation of new programs is a matter of routine and good
craftmanship, the real problem is that the programming language (and
the good programs formulated in them) should be understood by anyone
involved in or influenced by the use of it. To design such languages
and to educate people to use them properly in their communication
with each other (and of course with their machines) is at the moment
a most urgent problem, as systems should be understood.

Some consequences for the design of programs and programming languages
shall be illustrated with examples from existing programs and
languages. The program, defined in a certain language is seen as a
boundary that seperates man from the machine. At one side of this
boundary we find man who has a more or less clear conceptualisation
of the kind of machine he wants, he is able to formulate in his

own words more or less precisely an algorithm for the behavior of
this machine. On the other side of this boundary we find the machine
(or the programmable environment) that offers the components and
possibilities to combine them into larger structions from which the
wanted machine can be constructed or, in other words, the programming
language in which the wanted behavior can be defined in a way that
enfores the machine to show this behavior. The elements of the
programming language are most of the time easily understood by man,
as is his concept of the wanted machine. The problem is that there

is often a large distance between them that is not easily bridged

by known relations and combinations. To bridge the gap is the
activity called programming where bridgebuilding starts at both

ends, '"bottom up' by constructing bits and pieces of program that can
be executed and are hoped to make the given machine look more like
the wanted one, and "top-down" by explaining the original
conceptualisation in terms of concepts and subalgorithms that one
hopes are easier to program using the given bits and pieces produced
in‘ the bottom-up way. Programming languages favor the bottom—up
approach most of the time, even well-structured languages like Pascal
where variables and procedures have to be declared and defined before
they are used. In the top-down approach their use in a larger context
comes first and their definition ("coding") in terms of the programming
language is postponed and can be postponed when the programmer can
clearly and understandable define in his own words what the variable

stands for or what effects a procedure has if it were implemented,

N

-

4 HE N N S BN BE Gy B B EE BN B S S B B BN BN B T B e .

-203 71.

In ELAN (a language designed Koster and used at many secondary

schools in Germany) one can write égal program using names for
parts of the program that are not yet defined, the definition is
postponed and seen as a (not essential although necessary) elaboration
of the meaning of the name in terms of the programming language.

This programming method is called "refinement". Of course it is not
forbidden to define a procedure beforehand when one foresees useful
applications, but one is not forced to do so. In the same sense it

is an advantage of BASIC that one can introduce (names of) variable

at the very moment they are needed, type—-cheeking can be automatised
as the variable type becomes clear sooner or later out of the context
and conflicts still can lead to error-messages. Sometimes the type

is not even relevant at a higher language level, for instance when

two variables of the same type have to exchange values.

Some remarks on research regarding the ergonomics of programming
languages remain to be made. This research is very important in order
to discover with(constructions available in a language), the limitations
of the human mind to handle complexity and to discover the kind of
complexities that should be avoided. It is for instance quite possible
to design a transparant program using goto-statements for certain
problems that lead to complex programs not easy to unravel if one
is restricted to nested if-then-else constructions. The reverse can
also be true. The sense of this kind of research is not to act as an
arbiter between proponents of differing programming styles and the
choice of control-structures to be admitted in a programming language,
but to give guidelines for a disciplined use of the different control
structures according to the kind of problem at hand such that
understandable programs result, and to inspire programming language
designers to implement a programming environment that enhances efficient
problemsolving procedures in programming, according to the limitation

and capabilities of the human problem solver.

R N B N BN Bh BN N BE R O BN R D R BN a B AR SN G aa EE L

Naming Commands: An Analysis of Designers' Naming Behaviour

Anker Helms Jgrgensen Phil Barnard & Nick Hammond Ian Clark

Institute of Datalogy MRC Applied Psychology Unit Human Factors Lab.

Copenhagen University 15 Chaucer Road IBM United Kingdom Labs.
Sigurdsgade 41 Cambridge CB2 2EF Hursley Park
DK-2200 Cop. N U.K. Winchester S021 2JN
Denmark U.K.

Abstract

Users often experience trouble in learning and using the commands in interactive
computer systems. They claim, for example, that the command names are computer-
centric and that the abbreviations are unsystematic and unintelligible.

In order to substantiate the grounds for such claims a study of computer system
designers' naming behaviour was carried out. An interactive questionnaire was
shipped on a computer manufacturer's communication network. The questionnaire
simulated a simple message-decoding system. The decoding took place in two stages.
First the details of the message-transmission procedure were established in 4
function steps (e.g. establish the transmission wavelength). Next the message
itself was decoded in 8 function steps.

The task of the system designers was to name the functions carried out in each
of the 12 steps. The functions were presented as "before-after" display frames.
The questionnaire was filled in by 110 designers.

The most striking feature of the result is an incredible variation in the
designers' names: every other designer chose a unique name. However, an archetype ,
appears across all the names: 68 ¥ were non-abbreviated single-word names.

When the names for each function are analysed semantically across the 110
designers a clear consensus emerges despite the large superficial variation.
Object-oriented names were chosen overwhelmingly for functions generating new
information, addressing the new information. The designers' selections were
clearly influenced in these cases by the task information available, e.g. table
headings. In contrast, action-oriented names were chosen overwhelmingly for func-
tions generating a new version of previously displayed information. Computer-cen-
tric names were quite frequent in these cases.

Hence a semantically archetypical command set appears. About 1/3 of the desig-
ners adhered to the archetypical command set. However, very little consistency
appeared when a single designer's choice across the 12 functions was considered.
Inconsistencies in for example abbreviation schemes and name structure were
the rule rather than the exception, even among the designers adhering to the
semantically archetypical command set.

In conclusion, the claims mentioned initially are to some extent supported by
this study. More specific, two points emerge. First, a large degree of consensus
semantically between the designers is blurred by an incredible superficial
variation. Second, most of the designers show a fairly small degree of systemati-
city within the command set.

Paper to be presented at COGNITIVE ENGINEERING
A Conference on the Psychology of
Problem Solving with Computers

Amsterdam, 10-13 August 1982

§ oo
MR LY

e

- Sm——— [-—ve——— ——

