

INTRODUCTION

Gerrit van der Veer, Michael Tauber, TI1omas Green, Peter Gorny

In August 1982 tne "First European Conference on Cognitive Engineering" was held in
Amsterdam. Scientists from the multidisciplinary domain comprising informaties,
engineering and cognitive psychology met, to discuss the theories, methods, models
and experiences of their disciplines. Fruitful contacts were made, some of them
quite stable. In the next two years this resulted in a better awareness of what was
going on in the different centres in Europe. Experimentalists became aware of new
theoretical concepts and models, theoreticians collected examples to ill~strate
their models, scientists involved in design methodology became aware of human fac
tors and developed design criteria to take care of these.

Tuis volume is a tentative step towards integration of these different streams. It
is in no way meant to mark final positions. At the "Second European Conference on
Cognitive Ergonomics" in Gmunden, Austria in September 1934 the discussion will be
continued, as will be done at various other meetings in the second half of 1984. The
current contributions should be conceived as working papers, outlining both what has
been effected thus far and what tasks are set for the near future.

Theoretical and methodological issues will be dealt with first, followed by contri
butions from the field of cognitive ergonomics and software design. Applications in
the domain of learning, aspects of graphic presentation modes and industrial appli
cations will conclude the overview.

1. MODELS AND METHODOLOGIES

In the art of systems design the notion of model is of growing importance. Models
depicting users feature in new design methods, guiding the designer about what
behaviour to expect from the future end-user. Meta models may be devised to incor
porate both user and system, creating a conceptual framework for communication about
design problems. Users will need models of the system in order to predict the out
come of their actions, and in fact always will develop models, whether the designer
did implement them or not. TI1e first part of this volume opens with a critica!
review of the relevant literature concerning modelling, human-computer interfaces
and related concepts, from the viewpoint of cognitive psychology and computer sci
ence. In this analysis Rohr and Tauber build on Moran's command language grammar
and Oberquelle's notions of human-computer communication. They elaborate upon a
representational framework as well as present a methodology for building interfaces
and teaching people how to use them.

Modelling tools and procedures help the user reduce the complexity of the real sys
tem and to influence it. In the view of Oberquelle the most appropriate concept from
the user's point of view is the model as a communicable abstract description of the
relevant aspects of the system, a "homomorphic image". The learning of a model is
facilitated if the intentions of the builder and the user are not too different.
Oberquelle develops a meta-model of human computer communication, a dialog between
abstract partners as a process, worked out in a three part model incorporating
separate roles for the designer, the dialog sys tem and the user. Each of these
partners has its own model of the whole communication process. The cooperation

2

between designer and user is important for the improvement of models of human com
puter communication. A procedure is proposed in which users are trained in model
ling tools (descriptions for external representation, e.g. nets, both graphical and
formal), common models of the work situations intended should be developed, and it
is suggested t.,at the final implementation should be preceded by prototyping and
testing.

Design for information systems no longer being an artistic profession, there is a
growing need for the development of methods. TraunmÜller categorises the different
approaches in devising methods in:

a procedure oriented approach: analysis and description of hierarchically struc
tured functions;
a database oriented approach, with statie properties;
a behaviour oriented approach, with dynamic properties like transitions and con
ditions;
prototyping as d.O experimental method;
logical modelling at the conceptual level ("mental prototyping").

To illustrate the relation between design methods and cognitive ergonomics examples
are cited and reviewed on their communicative qualities concerning different target
groups: builders, manager, end users. Emphasis is laid on design as a process, not
an end product, and on participation of the end user in the early stages of this
process.

Van der Veer and Van Muylwijk present methodological notions, illustrated witn an
example about field studies of the development of knowledge of a computer systems
during the introductory phase of learning. The method starts with an analysis of the
content of the course, concentrating on the models and metaphors the teacher intends
to transfer.
Tests for entering behaviour and the concepts present in the novice have to be
developed, their outcome should be compared to measurements of the final models.
Relevant cognitive styles may be measured and their effect upon the development of
the models in individual users may be established. Descriptive observations and
correlational analysis may result in hypotheses about causal relations, to be veri
fied empirically by observing comparable learning situations that vary along well
defined dimensions.

2. COGNITIVE ASPECTS

The quality of human computer interaction is toa large extend determined by the
ergonomie features of the system. When knowledge about cognitive psychological
notions is adequately assimilated in the design the human partner may interpreted
the reactions of the sys tems as "logical" behaviour. On the other hand the user may
be allowed to make use of semantic constructions that are consistent with his
"natural" knowledge structure.

Communication between human beings makes use, besides natural language, of other
aspects like gestures. According to Schneider, Lind, Allard and Sandblad human com
puter communication can not easily be constructed in this way. Recent models of
human cognition feature a distinction between a high capacity subconscious parallel
processing system and a sequential conscious limited capacity processor.
Time space patterns are represented in the first system. In constructing human com
puter interfaces it seems useful to represent as much as possible of the program and
its functions as time space patterns. As far as computer functions are designed
analogous to those environmental aspects that our sensory, motor and intellectual
abilities have been shaped to handle, the system is easy to use, even for beginners.

The interaction with computers consists partly of handling complex descriptions.
Potts suggests a canonical formulation for the expression of different specifica
tions for different categories of users and different viewpoints.

PREFACE

The chapters in this book are papers that will be read on the Second European
Conference on Cognitive Ergonomics - Mind and Computers, Gmunden, Austria in Sep
tember 1984, sponsored by IFLP WG. 6.3 (Human-Computer communication), and organised
under the auspices of the Ostereichische Computer Gesellschaft OCG), the
Gesellschaft fÜr Bildungstechnologie (GBT) and the Gesellschaft für Informatik
(GI).

Cognitive Ergonomics is a new interdisciplinary research field between computer sci
ence and psychology. The investigation of design-criteria for human computer inter
faces under cognitive aspects, modelling of systems, users and interfaces and empir
ical work characterise the research in cognitive ergonomics (sometimes also called
cognitive engineering). The aim of this book and of the Gmunden conference is to
bring together contributions from European scientists of Cognitive Ergonomics.

In preparing this volume, the editors owe a great deal to Francis Brazier, who care
fully read, interpreted and if necessary reworded the contributions of most of those
authors whose first language is not English. Generously investing far too much of
her time, she succeeded in preserving the original meaning. Elly Lammers was respon
sible for the organisation involved in this publication, for the lay out and for
typing the greater part of the papers. She spent her days telephoning through Europe
and her · nights communicating with the UNIX system. Without Francis and Elly this
book would have lost much in readability.

July, 1984
Gerrit van der Veer
Michael Tauber
Thomas Green
Peter Gorny

CONTENTS

Preface

Introduction
G.C. van der Veer, M.J. Tauber, T.R.G. Green and P. Gorny

MODELS AND METHODOLOGY

Representational frameworks and models for human-computer interfaces
G.Rohr and M.J. Tauber

On models and modelling in human-computer co-operation
H. Oberquelle

Information systems design methodologies and their compliance with cogni
tive ergonomy
R. TraunmÜller

Introducing statistical computing Evolution of the cognitive system of
the novice user
G.C. van der Veer , B. van Muylwijk and G.J.E. van de Wolde

COGNITIVE ASPECTS

Human cognition and human computer interaction
W. Schneider, M. Lind, R. Allard and B. Sandblad

Understanding complex descriptions
c. Potts

Do we really have conditional statements in our brains?
J.-M. Hoc

Cognitive ergonomie research at SAPU, Sheffield
T.R.G. Green

SOFTWARE ENVIRONMENTS

Active help systems
G. Fischer, A. Lemke and T. Schwab

Fatal error in pass zero: How not to confuse novices
B. du Boulay and I. Matthew

III

1

8

26

44

62

76

81

92

102

116

132

NOVICES AND LEARNING

On the implications of users' prior knowledge for human-computer interac
tion
Y. Waern 144

Web teaching as a design consideration for the adaptive presentation of
textual information.
P.A.M. Kommers

Toe computer in the classroom
G.C. van der Veer and J.J. Beishuizen

INTERFACES IN THE FIELD

A realisation of a human-computer interface for naîve users - a casestudy
G. Haring and T. Krasser

Real time graphic simulation of visual effects of egomotion
P. Peruch, V. Caval lo, C. Deutsch and J. Pailhous

Processing TV information and eye movements research
G. d'Ydewalle

From surface form to the structure of the interface
computer interaction at INRIA
P. Falzon

ORGANISATIONS AND SYSTEMS

New technology: Choice, control and skills
C,W. Clegg, N.J. Kemp and T.D. Wall

studies in human

Semiotica and informaties: The impact of EDP-based systems upon the
professional language of nurses
L. Mathiassen and P.B. Andersen

What does real work analysis tel1 us about system design?
L. Pinsky and B. Pavard

Psychological selection of personnel for data processing professions
H. Pitariu

Contributors

161

170

182

192

200

205

218

226

248

260

268

3

The "external interface" comprises tne user interface, appropriate to some category
of users, between external description and conceptual description. The "conceptual
interface" comprises the translation bet11een the task and the internal description
according to some viewpoint. Steps in the transformation of descriptions are refor
mulation, filtering, generalisation and integration. This process requires for a
domain model and a user model. PROLOG may be used as a canonical formalisation for
specifications. Rapid prototyping is a means of validating specifications by direct
observation.

Hoc presents an experimental evaluation of the effect of representation of the data
structure. If the program is written in such a way that the commands refer toa
semantic representation of the data, incorporating information about the next opera
tion conditional on the effect of the foregoing, the response latencies and error
rates reflect preparation of the subjects for the next action. In the case of an
abstract representation however, incompatible with the control structure implied in
the data, this preparation disappears and the subject is forced to explicitly iden
tify every condition.

The difficulties in learning and using text editors are analysed by Green, covering
a design of notation, the choice between many "weak" or few "po11erful" commands, the
possibilities offered by speech recognition and the origins of users' mistakes. A
recurrent theme in this paper is the need to create command language structures that
are appropriate to the task and visible to the user.

3. SOFTWARE ENVIRONMENTS

Two papers about meta-communication (communication about the human-machine inter
course, often about problems in interaction) are presented in this section.

Fisher, Lemke and Schwab deal with user support systems incorporating a knowledge
base about the problem domain, communication processes, the communication partner
and common problems of the users. Tuis communication may take place along implicit
or explicit (graphic or menu based) channels. User support functions may be divided
into tutorial, explanatory, documentation and help systems. Toe help facilities are
further analysed in passive and active help systems. Requirements for help systems
incorporate a view of human information processing, the individual user's expertise
and 'knowledge structure and knowledge about the task domain. An example of a proto
type system in given, implemented for the screen oriented editor BISY, both in pas
sive and active modes.

As the traditional error-messages are of little use for novice programmers to debug
their first attempts, Du Boulay and Matthew present an analysis of the desired func
tions of error systems. A survey is given of the existing attempts to built "intel
ligent" compilers. The authors present a prototype error checker, written in PRO
LOG, working on a small subset of PASCAL. There are five subsystems, concerned 11ith
lexical, syntactic, semantic and logical analysis and a trace mechanism. These sub
systems look first of all for those errors that are characteristic of novices'
behaviour, and react in a language adjusted to the level of knowledge of a naive
user.

4

4. NOVICES AND LEARNING

When a person is first brought into contact with a computer
learning may be expected, and indeed the situation is often
in a way that is intended to optimise learning. Optimisation
this sec tion is based on different theoretical analyses, in
different amounts of empirical evidence.

system some kind of
deliberately structured
in the contributions in
some cases validated by

Analysis of problem solving theories in a paper by Waern points to 5 factors deter
m1n1ng speed of learning in interaction with computer systems. Theoretically 4 dif
ferent types of learning result could be expected: goal-condition-method rules,
higher order rules, problem schemata and causal relations. These different concepts
can all be incorporated in the idea of a model of the system.
Observations with different tasks, varying along the mentioned 5 factors that should
determine learning speed, confirmed the existence of results of the types of goal
condition-method rules and problem schemata. Examples of the other types of learning
results could not be detected in these observations. Users rely strongly upon prior
knowledge when approaching a new system. Transfer could be negative as was observed
in the case of an experienced programmer who spent much time discarding well esta
blished schemata,

For the acqu1s1t1on of textual information in computer assisted teaching Kommers
advocates a combination of learner control and "web-teaching" (based on presenting
the structure of the learning material in a network in which the configuration and
centrality of the concepts are derived from expert knowledge), Adaptation of the
presentation sequence to prior knowledge of the student may be achieved by different
conversational strategies of which examples are given.

An overview is presented by Van der Veer and Beishuizen, of a long term research
project investigating prospects for the application of computers in education, bow~
from a cognitive psychological point of view (evaluated by experimental methods) and
from the point of view of ac tual use and user acceptance (long term observations in
primary schools). Combination of both kinds of result leads to suggestions for
fruitful applications depending upon both the changeability of cognitive functions
and the goals of the learning process.

5, INTERFACES IN THE FIELD

Tuis section contains examples of prototype interfaces for practical situations
(Haring et al. and Peruch et al,), followed by two studies in which feature the cog
n1t1ve ergonomie aspects of visual displays. Falzon comments also on interactive
language systems, All of the studies result in suggestions for future applications.

The paper by Haring and Krasser describes a case study of the design of a human com
puter interface for novice users (staff of a company in mechanical engineering
industry) for an information storage and retrieval system. The design process
started with an analysis of the goals into primary design goals and human factor
design goals. Tne interface provided several dialogue styles (menu selection, form
filling and the selection of function keys) each of which has advantages and disad
vantages, The design phases parallel the software life cycle (planning, definition,
design, implementation, installation, maintenance), Important in the case described
is the integration in the development procedure of a model of the user, to which the
output of each step is related, Besides this, rapid prototyping offers another
opportunity for validation.

5

Peruch et al., report a study of ergonomie aspects of dynamic graphical support sys
tems for control tasks (ship manoeuvring), based on a model of the cognitive
processes, developed in a multi disciplinary approach. The method used is a simula
tion of ship displacement due to environmental conditions and actions of the pilot
(non professional or professional). Two modes of presentation are compared: carto
graphic vs. perspective pictorial information, both complemented with alphanumeric
data about speed and steering parameters. The results show the perspective mode to
be the most efficient, being isomorphic to "natural" processing,

Referring to psychological theories about the input side of human information pro
cessing, short term memory capacity and attention switching between different input
streams, research is reported by d'Ydewalle on the perception of visual display
units, especially the effect of reading subtitles below a dynamic visual information
stream on the screen. Eye movement registration revealed characteristic fixation
patterns: Subjects commonly look at the moving image first and thereafter spend a
short time reading one or two keywords from the subtitle. They jump directly to
these words. Tuis suggests a preparation via parallel processing of the verbal input
channel. To process the subtitles totally, subjects might need a presentation time
that is longer than normally provided in subtitled films.

Falzon presents an overview of studies in human computer interaction at INRIA. The
problem of the design of visual representation of information is analysed, present
ing alternatives for the same situation that differ in the way relations are
represented. Tuis representation should be compatible to the mental representation
of the user. Research on interactive language systems for novices focussed on com
mand languages using icons for objects and words for actions. Redundancy in command
language turned out to be helpful for experienced users, but not for novices. Again
compatibility is important, between the label used in the command language and the
concepts evoked in the user by these labels. The same holds for the structure of the
software and the semantic notions of the user.

6. ORGANISATIONS AND SYSTEMS.

Some aspects of the impact of the introduction of computer systems in society are
analysed in the last division of this volume. Tne effect on the organisation struc
ture of employees in industry and in a hospital ward are represented by case stu
dies, Some experimental results are reported by Pinsky and Pavard and a case of a
national development and validation program for job selection procedures is
described.

Two different fictional cases of the effect of computerisation in a manufacturing
environment are sketched by Clegg et al. In the first company the end users /
operators share the responsibility for tool setting, planning and programming with
the official programmers. They enjoy their jobs, earn high wages but on the other
hand the management has problems in retrieving information from the shop floor. In
the other company, in all respects comparable to the first, management is completely
in control. Machine operators have only a monitoring function, tool setting and pro
gramming is done by different specialists. The operators show a low level of satis
faction and motivation. Comparison of these extreme opposites shows that the social
structure is certainly not determined by technology alone. Strategie choices ·by the
management result in different structures of operational control, accompanied by
different patterns of benefits and costs.

Mathiassen and Andersen present a casestudy of the organisation of tasks between
nurses in a hospital ward, showing the changes caused by the introduction of comput
ers in the work situation. It is worth noting that the nurses were actively involved
in the introduction of the system and in the definition of the formal language used,
the semiotic system. An analysis is made of the effects of the pattern and content
of the inter personal communication, on the semantic structure, the expression level

6

and the content structure of the language used in communication, and on the roles in
the organisation.

The contribution by Pinsky and Pavard deals with ergonomie experiments on structure
of activity and cognitive processes. A first example illustrates an on line data
coding task. The method of prototyping is combined with the analysis of verbal pro
tocols of the users, in order to discover inadequacies of the system. The second
example deals with text composition tasks at a word processing system. The method of
analysis in this case is the unobtrusive recording of action sequencies in an exper
imental task comparing different traditional and computerised editing systems.

Pitariu describes a psychological analysis of the prerequisites for predicting suc
cess in man machine jobs, and reports validation studies for the selection of test
batteries for various kinds of programmer jobs, key punch operators and computer
operators. Tuis is part of a national program for the professional training in
informaties.

MODELS AND METHODOLOGY

REPRESENTATIONAL FRAMEWORKS AND MODELS
FOR HUMAN-COMPUTER INTERFACES

Gabriele Rohr, Michael J. Tauber

IBM Germany Heidelberg Scientific Center
Federal Republic of Germany

This paper is mainly based on discussions between a computer scientist and a psychol
ogist concerning models of human-computer interaction. It tries to specify what a mo
del is, which purpose it serves, and which components of human-computer interaction
have to be modelled. Furthermore, these specifications are compared with already ex
isting models.

Models are discussed recently in connection with building up an adequate user inter
face architecture. Design criteria are needed to construct interfaces which take into
consideration human information processing abilities as wel! as task structures re
presented by the human . Hereby, "Archi tecture means the complete and forma! de
script ion of the surface of a system seen from a well-defined interface. Therefore,
architecture is more than the usual specification . Architecture also contains a model
of the user and a model of the communication between a user and a system . . . Architec
ture does not refer to the product only . With the same weight, architecture refers to
the production process and its documentation" (Zemanek 1982; translated by the au
thors).

To meet these requirements, models of human behavior in interaction with computer sys
tems are needed. Several models of human-computer interaction have been worked out in
the past. They differ however very much in the aspects they describe. A classifica
tion of these models has not been done yet .

In this paper an attempt is made to clarify the knowledge and methods that are required
to build up an adequate model of human-computer interaction and would help to formu
late an abstract architecture. Centra! roles in the discussion play the terms model
and representational framework. It must be pointed out that the first step in build
ing up an architecture is the complete forma! specification of the virtual system from
an intended user's point of view.

1. MODELS

1.1 Definition of the model concept

A model is a representation of an object where relevant properties of the object are
mapped onto a specific substrate different of that of the object (symbolic signs,
electrical circuits, etc ...) . The select ion of "relevant" properties presupposes a
subject which decides the relevance and a function for which the representation is a
purpose. The object can consist of one or more partial objects and their relation to
one another, but it must at least contain two clearly definable properties which can
be related to each ether.

9

Generally, a model is regarded as embedded in a ternary relationship R (M,S,O), where

M stands for the model
S for the subject and his intended model function
0 for the object to be modelled.

Building up a model means to specifiy M, S, and O, and to define the mapping relations
between O and M (see Klaus and Liebscher, 1979).

To specify M means to determine the substrate of which the model is to be made, i.e . ,
if it should be material (electrical circuits etc.) or non-material (a special sign
notation like mathematics, graphical sign structures, or programming languages,
etc.) . The selection depends on the purpose of the model.

To specify S means to determine the purpose the model should serve (i.e . to gain know
ledge about a structure, function, or behavior of a system (e.g. stability) or to gain
design criteria fora machine, etc.).

Finally, to specify O means to determine the components (properties) of the object to
be modelled and their assumed relation structure of which parameters have to beiden
tified.

An important point in the use of models is their evaluation concerning their quality.
Quality means how well a model can either predict or describe the behavior and the per
formance, or to describe the structure of the modelled object.

1.2 Genera! Purpose of man-machine models

Man-machine models are generally used to predict overall man-machine systems' perform
ance. Since performance measures do not necessarily include measures of the individ
ual behavioral steps in time history of a human interacting with the machine, only
little can be said about the causes of high or low performance (Rouse 1980) . Hence,
models of human and machine behavior are required . Behavioral models are stronger
than performance models allowing statements about causes of performance . Only through
such models, detailed criteria for improving performance in man-machine interaction
can be developed. This would mean either improving machine structure and/or dynamics
on the one side, or improving of human skills on the other side.

In any case, independently of the chosen strategy, a set of parameters relevant for
the behavioral control (on the machine and on the human side) has to be defined. The
main purpose of man-machine models is to identify these key parameters and their val
ues. After their identification, an explicit model results allowing predictions about
man-machine systems's behavior and its performance limits under different structures
and dynamics. From these models, design criteria for machines or teaching strategies
for improving skills can be derived.

The definition and identification of key parameters can become very difficult, espe
cially if the system to be modelled is very complex . For this reason, only simple
man-machine systems have been explicitly modelled as yet with numerical valued parame
ters, e .g., models of machine control. Manual control systems are mainly defined on
the machine side by the amplitude and the time delay of response in the frequency do
main, and on the human side, perceptual motor time delays, frequency limits and pre
dictive abilities as key parameters (see Figure 1) .

By means of these values, transfer functions can be computed, and overall performance,
and stability limits if disturbances are added can be predicted (see Johannsen et al.,

10

1977). Once analyzed, the system can be improved by training the human controller, or
improving the machine characteristics.

r
1

1

1

L

Human operator

Neuromoto
d namics

+

Motor

Disturbance

1

Controlled
process

Optimal
controlle

noise

Optima!
predictor

Display

Kalman
filter

Reaction
time delay

Observation noise

Figure 1: Example of a model of a manual control system

1

_I

A good example is the system of human ship control. The critical parameter value is
the great latency responce of the machine. Together with external disturbances it
leads to great instabilities of the system if there is no high predictive ability of
the human. Only few people have this high predictive ability for such tasks and train
ing methods are not very efficient. These findings led to the construction of predic
tive displays (Widdel and Krais, 1982).

Human-computer interaction is not as easy to model as the system described above.
First of all, the parameters of the abilities required are not well defined. Secondly,
the system is very complex and structured by a symbolic representation . The kind of
structuring varies very much.

1.3 Modelling Human-Computer Interaction (HCI)

Modelling the human-computer interaction means clearly to define a set of parameters
on the machine side and another set of the human user's side which could be related to
one another. It must be noticed, however, that in this case the parameters on the ma
chine side can only be defined with respect · to the symbolic representation of the ma
chine, i . e. the interface, and not to the machine structure itself. Because there is a
large amount of possibilities of varying interface structures, whose parameters must
be regarded in close connection to the parameters of human abilities.

Unfortunately, designers often forget that the user is a system component within the
system of human-computer interaction, or they overestimate the learning capacity of
the human user.

What is the main concern of a user interacting with a software system (symbolic repre
sentation of the computing machine : interface)? The user must build up a mental rep-

U S E R

menta I representat ion

1 N T E R F A C E

symbo I ic representat ion
(use r software)

I

S T A T E

OBJECT OPERATION DJ
. CII

1
OBJECT OPERATIO~

organ i zat ion

L /:~<!

COMPUTER S Y S T E M

trans lat ion

machine structure
(system software)

Figure 2: A model of system representations in human computer interaction: Components, connections between and
transformations on them

12

resentation of the system's structure and gain knowledge about the functions of this
system with respect toa set of tasks. Furthermore, he must learn the language, i.e.,
a set of symbols, their syntax, and operations connected to them, to evoke interaction
sequences related to task and subtask functions. So, the user's representations of
the system structure are models of a virtual machine, whereby "virtual machine" is de
fined as a representation of the functionality of a system (functional units and their
behavior) . The most important point for the user is the relation between task and ma
chine, and not so much the internal structure of the machine's system. Consequently,
the task for the designer is to model a suitable interface as a representation of the
virtual machine which can serve as a possible mental representation for the user.

Summarizing, for modelling human-computer interaction systems we must regard the sym
bolic representation of the system, the mental representation of the user, and their
relation to each ether . Hereby, the symbolic representation of the machine system
consists of the following elements:

Objects (things to operate on)
Operations (symbols and their syntax)
States (where special operations are possible: structuring operations)

and the mental representation can be structured in representing :

Objects
Operations
States
System structure
task structure

(see Figure 2)

Mental workload affecting the system's overall performance can occur now if there is
either perceptual uncertainty or mental memory workload. Perceptual uncertainty means
that it is not or only with great effort possible for the user to distinguish different
states or operations . Mental memory workload means that there is a great number of op
erations and states which are difficult to structure and the only structure that can
be derived needs a high number of mental operations to be adapted to the task struc
ture.

Some scientists concerned with model building speak of human-computer "communi
cation", regarding communication elements also (e.g . , Oberquelle, Kupka, and Maas,
1983). They regard the human user and the computer system as two communication part
ners and postulate:

1. Communication serves to co-ordinate (real and symbolic) actions of several agents.

2. Communication is determined by the objectives of all participants (intentions).

3. Communication depends on comparable premises for understanding (knowledge and
conventions).

4. Communication can refer to the communication process itself and to its precon
ditions (metacommunication)

5. Communication is always coupled with expectations concerning the partner (partner
model) .

6 . In communication there is a trend towards economical behavior .

13

From these statements they derive a special structure representing main components of
human-computer communication, see Figure 3.

Pl P2

Figure 3: A model of the components of two communicating partners (from which one
could be a machine)

It must be noticed here, however, that in speaking of "Communication" intentional acts
are more or less explicitly assumed for both communication partners, that means for
the machine side also. It is questionnable whether this assumption is realistic.

2. MENTAL REPRESENTATIONS - A REPRESENTATIONAL FRAMEWORK TO DESCRIBE IT

In the component model of human-computer communication (Oberquelle, Kupka, Maas 1983)
one component is called "model of the partner". This component means the mental rep
resentation the user has acquired about the system structure on the human component
side. For users such a knowledge is necessary to control and predict the behavior of
the system. Mental representations map world states where understanding is described
by internal processes effecting the mental representation by changing states in this
representation, and it therefore models a real process of changing the assigned states
in the world (see Figure 4; compare Bobrow, 1975; Jagodzinski, 1983; Tauber, 1984).

This kind of understanding provides the user with the competence to describe a special
process internally by effects on the mental representation and to delegate it then to
the real system.

One reasonable approach to design human-computer interfaces is to consider users men
tal representations of the system. It must be asked which kind and structure of a sym
bolic representation (interface) is most suitable for the user to build up an internal
representation . Users' mental representations are internal models of an external sys
tem specified by the function to control his actions in interaction with a machine
system. The main purpose for a user interacting with a machine is to. per form a

14

SvSTEM
(DESCRIBED BY CHANGING STATES)

STATE I

PROCESS
IN THE SYSTEM

M A p p I

S Y S T E M

REPRESENTATIONS
(UNDERSTANDINGS)

T STATEN

1

..l,
STATE I+l 0--------------• STATE N+l

MAPPING M

fIGURE 4: MAPPING OF THE SYSTEM ON THE USER MODEL OF THE
SVSTEM

15

well-defined class of tasks by means of that machine. Therefore it must be assumed
that the mental model the user builds up about the real system is influenced by his re
presentation of the task structure. The architecture of the system determines how the
task can be performed . The underlying "task logic" (specific for each system) is the
task space.

Task spaces are defined by a set of tasks T(l), .. . , T(n) changing the state of an ob
ject world, described by states S(l), .. . , S(m) . Each task is described by an initia!
state S(I) and a goal state S(G).

Tasks entail subtasks, and the relationship between tasks and subtasks defines the
task structure. In the task structure (of hierarchical order) primitive tasks (not de
composable) and composed tasks (composed of primitive and composed tasks) can be dis
tinguished (see Figure 5).

0 (OMPOSED TASKS

- PRIMITIVE TASKS (TO DEFINE IN THE INTERFACE)

Figure 5: Example fora task-structure

Each system defines a task-space with which the user should be acquainted . Halasz and
Moran (1982) and Moran (1983) showed that users' knowledge of the task-logic is some
times quite different to the task logic defined by the system . The reason is that tasks
are often performed by means of ether tools. Mor an (1983) def ines "task space" as al
ways to be the internally represented task space related toa system . He furthermore
distinguishes between an external task space (not computer related) and an internal
task space (related toa computer system) .

To perform tasks by means of a system users must knowhow "real objects" are repres
ented in the system (system objects), and which operations (system operations) are
provided by the system to manipulate system objects and to change the state of the ob
ject world .

16

Each mentally represented task is described by a composition of system operations and
user operations. User operations have the same effect as system functions, they manip
ulate objects and change the state of the object-world, but are performed by the user .
In addition to the knowledge about the task-space users need a model about the func
tionality of the system with respect to the undertying task space for understanding
the system (see Figure 6).

SO ,----------------,SO

S,OP ,--------------,S,OP

SET OF SYSTEM-OBJECTS AS
SYSTEM S REPRESANTATIONS
OF ENTITIES
<MAY BE STRUCTURED)

SET OF SYSTEM-OPERATIONS

l l OBJECTS

S.OP

" OBJECT

U,OP ,-------------------,U,OP SET OF USER-OPERATIONS

T ~(---~) P (SYSTEM-OPERATIONS,USER-OPERATIONS) :

Figure 6 : Semantic level (functionality)

EACH TASK IS DESCRIBED
BY A COMPOSIOTION P Z
USER-OPERATIONS AND
SYSTEM-OPERATIONS

The functionality itself must be described and evoked by a suitable language. Commands
are related toa semantic procedure (composed of system operations) and grouped to
gether in contexts (system states defined by the sets of commands applicable in the

17

state). Objects (as arguments) manipulated by the semantic procedure which is trig
gered by the commands must be named by descriptors (see Figure 7)

ENTRY-COMMANDS

CONTEXT (SYSTEM-STATE) CONTEXT-COMANDS
L_

EXIT-COMMANDS

DESCRIPTORS FOR OPBJECTS

COMMAND

NAME

RELATED ÜBJECTS

PROCEDURE OF SYSTEM
OPERATIOENS TO PERFORM

T ~(--) p ((OMMANDS,USER-ÜPERATIONS):

Figure 7: Syntactic level (language)

[ACH TASK IS DONE BY PROCEDURE p
COMPOSED OF (OMMANDS AND
USER-ÜPERATIONS

Finally, actions must be performed by the user and the system in a sequence of users'
specifications and system's responses. The time sequence is determined by the com
mand-argument structure and the command contexts (syntactic hierarchy) and is a prod
uct of user's or system's decisions during the dialogue-process . Each command must be
specified by a physical action and each argument also . Users neeq knowledge about the
process to specify a command and about the time structure of the possible specifica
tions (see Figure 8).

This short and roughly illustrated picture of a layered mental representation of sys
tems is based on the work of Moran (1981; CGL) which is central for HCI research.

18

The point of view for mental representations given in his command-language grammar
(CGL) is the basis fora representational framework to describe representations of a
system . The main point is the idea of layered representations, which represents the
process of task performing on different levels (task space level, semantic level, syn
tactic level, and interaction level).

SYNTACTIC HIRARCHY
OF A USER-SPECIFICATION

RULES ABOUT THE TIME-STRUCTURE
OF USER-SPECIFICATIONS IN
AN USER-ACTION

RULES ABOUT USER ACTIONS

PROMPT
USER ÄCTION
iNTERPRETATION
SvsTEM ÄCTION

Î L(---~)P (USER-SPECIFICATION,USER-0PERATIONS)

Figure 8: Interaction level (actions)

3 . INTERFACES AS REPRESENTATIONS OF SYSTEMS

3 . 1 . General remarks

The crucial point in designing an interface fora HCI system is to find out an archi
tecture which can serve as intended mental representation for the user. Tuis approach
needs to specify a complete representation of the virtuality of a machine with respect
toa chosen task-space which can serve as a "theory of the system" for the user.

The system must be described completely and exhaustively on the three levels mentioned
above (semantic, syntactic, and interaction level) and reveal not only the visible
components of a system but also the whole conceptual world . The definition (we think
the broadest and best) of an interface as a representation of the virtuality of the ma
chine system matches in a certain sense the definition of the conceptual interface as
a set of mutual suppositions.

3.2 . The conceptual model and its notation

To build up a concrete interface on the basis of a representational framework requires
a modelling process. The first step is to describe the conceptual world as it should be
presented to the user in a specific sign notation. For this the conceptual model de-

19

fined by Moran (1981) and Norman (1983) is suited best at present . The model is pre
sented in a specific sign notation and its function is to describe a complete
representation of the virtual system . The symbolic notation concerns the task-space as
well as the three representation levels : semantic, syntactic, and interaction, and the
elements of each level.

The most overall technique of notation has been proposed by Moran (1981) with his CLG.
He uses a notation technique to develop the conceptual world straight forward and re
presents the semantic and the syntactic level in a frame-like notation. He starts with
the semantic definition of a system :

X-SYSTEM = (A SYSTEM
NAME='
ENTITIES (SET
OPERATIONS = (SET

Further he specifies each entity by

X-ENTITY = (AN ENTITY
OF (Y-ENTITY)
NAME=

or Z-ENTITY (AN ENTITY
REPRESENTS (X-OBJECT)
NAME =)

or Y-ENTITY = (A LIST)

))

and then he specifies each system operation by

X-OPERATION = (A SYSTEM-OPERATION
OBJECT= (A PARAMETER)
VALUE = (A X-ENTITY)
DEFAULT VALUE = . . .))

Finally for each task to perform a procedure built from system operations and user op
erations can be specified :

X-METHOD = (A SEMANTIC-METHOD
FOR X-TASK

DO(. . . Description of the procedure by means of
a control flow through the used system's and
user's operations))

X, Y, Z in connection with entities , tasks , and operations mean a concrete entity,
task, or operation .

The same technique to build up a concept hierarchy is also used for the syntactic level
to specify command contexts (describing the system states), to name entities by de
scriptors, to describe single commands by means of the related semantic procedure, and
to define a task by a procedure of commands and user' s operations .

Quite different is the technique for describing the interaction level. To each com
mand-argument specification an interaction tree must be assigned describing the time
sequence of the single user's and the system's actions .

20

Beyond the description of a single command specification rules consistent with respect
to the user are needed which describe similar ways of naming commands and arguments,
and evoking them by physical actions. Here some work has been done by means of the no
tation of productions (Moran 1981) or higher-ordered rules (Payne and Green, 1983).

Most methods to notate a conceptual model are knowledge based and provide a complete
description of the system's representation.

Jacob (1983a, 1983b) developed a specification technique which specifies the semantic
level by means of LISP functions and the syntactic as well as the interaction level by
means of special kinds of state-transition diagrams. His symbolic descriptions serves
as a model for prototypes of interfaces. He does not specify, however, the conceptual
world underlying the interface like the CLG technique. Conceptual classes (chunking),
e.g., or rules for consistency are not specified.

4. DECISIONS IN THE DESIGN PROCESS

4.1 Decision steps

The method of modelling interfaces by means of conceptual models indicates how many
decisions a designer has to take on the construction of an interface which he wants to
base on an explicit user model. Table 1 illustrates this point.

Ina top-down designing process, beginning with a given task space and proceeding to
the interface level, a designer has to decide which model he will choose on each level
(see Figure 9).

EXTERNAL TASK SPACE

I~'TERNAL TASK SPACE

SEMANTIC LEVEL

SYNTACTIC LEVEL

I~'TERACTION LEVEL

Figure 9: The model decision tree of the designer

21

By means of these roedels selected the designer builds up a complete interface which
has the following user perceived qualities: flexibility (the system provides one or
more kinds of interfaces), self explanation (the system explicits the conceptual mod
el), consistency (there are rules for chunking single concepts), etc.

An important point for the decisions on each level is that an interface should provide
reduction of complexity for the user as can be seen from the questions in table 1.

TABLE 1

1 1 1
!LEVEL THINGS TO OECIDE !SPECIAL QUESTIONS
I _______________________ ! ________________ _
1 1
ITask-Space Definition of the objects I- How primitive are primitives?
l Object structure I- How complex is the task-structure?

Are objects chunked and how? l Primitive tasks
1 Composed tasks
I _____ _ -------------------- --------------------
1
Semant ic
Level

Syntactic
Level

System objects as representations
of objects
System operations

User operations

Commands and related semantic
procedure

Contexts as cht1nking of commands
to system states

Description of objects I
l
I
l-

How many systems operations are to
define?
How complex is the functional ity of
each system operation?
How complex are the procedures made
from system and user operations
assigned to each primitive task?
How complex are user operations?

How complex is the semantic pro
cedt1re toa command; should a
command be related toa semantic
systcm operation, toa procedure of
system operations or toa complete
task?
What commands should be col lected to
a context?
How complex is a context?
Are there defaults?

------ --------------------'-------------------
1

lnteraction- - Rtilcs to spccify a tiser action 1- How complex are the operations on
Level Definition of al I single user actionsl the keyboard, with the mouse, ...

1 - Visible systems actions 1- Are there simi lar or equivalent
1 1 techniques to specify different
1 1 actions (consistency)
I _ _________________________ ! ___ _ ___ _ __________ _

4.2 Reducing complexity

Complex systems are defined by having a great number of states, and transitions be
tween states and operations. Hereby it must be noticed that complexity can only be re
garded with respect to the user of a system, and consequently it only can be defined
fora given representation of a system and not for the system itself (Rasmussen and
Lind, 1981). Hence we must regard mainly the user' s ment al representations of the
system structure in relation to the symbolic representation of the system, the human
machine interface, i.e. the organisation of the single displays, their refer
ence/relation to each ether, and the relation of the symbols to the causal structure
of the system. (see here and for the following Figure 2)

Complexity on the representation side is created with respect to the human user if
there is a great amount of elements and relations between these elements which have to

22

be memorized by the user. Reducing complexity at this level (the interaction level af
ter Moran 1981) means to display most of the information needed at the screen: (1) sym
bolizing states, their transitions, and organization by an interpretable screen
layout; (2) symbolizing chunking of operations which evoke an association of the un
derlying causal structure. Some investigations on this point have been done by Rohr
and Keppel (1984, 1985) and Keppel and Rohr (1984).

Another point influencing complexity at this level is perceptual uncertainty. If two
different states allowing only different kinds of operations cannot be distinguished
from each other by the user, the user has to memorize operational sequences in the time
history forto know which state he has reached.

Complexity can occur in higher levels also. First the represented task structure it
self can be complex. Furthermore, even if the represented system structure as well as
the task structure are not complex, the transformation of the system structure toa
virtual machine (in the sense defined in 2.3) by means of the task structure (external
task space after Moran 1981) can require a great number of transformation rules which
makes the complete represented task space very complex.

Last not least, if chunking strategies (i.e. categorial classifications of command op
erations) implemented in the interface (symbolic representation of the system) do not
correspond with mental chunking strategies the user must again develop categorization
rules affecting mental workload, and enlarging mental complexity.

Reducing complexity in the last two points means to analyze mental task spaces and ca
tegorization rules of the human user, and consequently to adapt the system's symbolic
representation to them.

5. MODELS IN HUMAN-COMPUTER INTERACTION - A SYNOPSIS

As defined above (1.1.), models of human-computer interaction can be characterized by
the substrate chosen, the purpose and subject they serve, the components of the object
chosen, and the quality in predicting or describing the behavior, performance, or
structure of the object.

Most models we try to characterize in the following, have either the purpose to gain
design criteria fora user interface architecture or to teach people better to use a
computer system. Symbolic sign notations are taken as model substrates, i.e., formal
languages or graphical sign notations.

The objects mainly chosen are:

1. The machine, defined by components which describe interfaces for control oper
ations of the user and/or designer

2. The human user, defined by components of cognitive processes which match require
ments of control operations at the machine

3. The human-computer interface as representation of the virtuality of the machine,
defined by components of tasks structure, human mental representations and proc
esses, and machine system (symbolic representation)

4. The overall human-computer communication system, selecting components which allow
a structural description of the system.

CONCEPTUAL MODEL
(Norman 1983)

IFIP MODEL
(Dzida 1983)

SITES-MODES-TRAILS
MODEL
(Nievergelt 1983)

USER-AGENT MODEL

KEY-STROKE MODEL
(Card,Moran,Newell
1983)

COMPONENT MODEL OF
COMMUNICATION
(Oberquelle,Kupka,
Maas 1983)

MODELS OF MENTAL
REPRESANTATIONS
AND PROCESSES

(genera.l)

PROTOTYPES (general)

23

Table 2

SUBSTRATE

formal
language

graphical
sign
notation

quasi formal
language and
graphical
sign notation

PURPOSE

find
design
criteria

find
design
criteria

find
design
criteria

graphical find

OBJECT QUALITY NOTE

(3)

(1)

(2)

describes
structure,
not tested out

only possible to
say where points
of modelling are,
no testing possi
ble in that form

describes
structure,
not tested out

sign notation design (3)
describes
components

criteria
(intel
ligent
interface

for modelling,
testing not
possible in
that form

formal/
mathematics

find (3) describes and
design part- predicts behavior
er i ter ia ia lly

graphical ?
sign notation mainly

component
selection

formal explaining
language, user
mathematics, behavior
graphical sign
notation

programming
language

test
design
criteria

(4) describes
components of
communication, no
testing possible
in that form

several models
(2) tested out can

applied to model
HCI systems

(1) describes
software
structures

24

The quality of prediction or description of the current models is difficult to evalu
ate in most of the cases. The main raison is that there have been only few attempts
yet to test them out.

Table 2 shows some current models used in describing human-computer interaction, and
their classification by means of the characteristics defined above.

REFERENCES

Bobrow, D.G. (1975). Dimensions of representation. In: Bobrow, D.G., Collins, A.
(Eds.). Representation and Understanding, Academie Press, New-York.

Dzida, W. (1983). Das IFIP-Modell zur Benutzerschnittstellen. Office Management.
Klaus, G., Liebscher, H. (1979). Lexikon der Kybernetik, Fisher, Frankfurt/M.
Gunzenhaeuser, R. (1984). Lernen als Dimension der Mensch- Maschine- Kommunikation.

In: Schauer, H., Tauber, M.J. (Eds.). Psychologie der Computerbenutzung,
Wien-Muenchen.

Halasz, F.G., Moran, T.P. (1982). Analogy considered as harmful. In: Moran, T.P.
(Ed.). Eight short papers on user psychology. Palo Alto, Xerox PARC, pp. 33-36.

Jacob, R.J.K. (1983a). Using formal specifications in the design of a Human- Computer
Interface. Comm. ACM, 26, pp. 259-264.

Jacob, R.J.K. (1983b). Executable specifications fora Human- Computer- Interface.
CHI'83 Proceedings, SIGCHI, ACM.

Jagodzinski, A.P. (1983). A theoretica! basis for the representation of on-line com
puter systems to naive users. Int. Journal of Man-Machine Studies 18, pp. 215-252.

Johannsen, G., Boller, H.E., Douges, E., Stein, W. (1977). Der Mensch im Regelkreis,
R. Oldenburg, Muenchen.

Keppel, E., Rohr, G. (1984). Prototyping - A method to explore human factor aspects in
application software. First International Symposium on Human Factors in Organiza
tional Design and Management, Hawai.

Moran, T.P. (1981). The command language grammar: a representation for the user inter
face of interactive computer systems. Int. Journal of Man-Machine Studies, 15, pp.
3-50.

Moran, T.P. (1983). Getting into a System: External- Internal Task Mapping Analysis.
CHI'83 Proceedings, SIGCHI, ACM.

Nievergelt, J. (1983). Die Gestaltung der Mensch- Machine- Schnittstelle. In:
Schauer, H., Tauber, M. J. (Eds.). Psychologie des Programmierens. Oldenburg,
Wien-Muenchen.

Norman, D.A. (1983). Same Observations on mental models. In: Gentner, D., Stevens,
A.L., Mental Models, Erlbaum Ass., Hillsdale N.J.

Oberquelle, H., Kupka, I., Maass, S. (1983). A view of Human- Machine Communication
and Co-operation. Int. Journal of Man-Machine-Studies, 19, 4, pp. 309-333.

Payne, S.J., Green, T.R.G. (1983). The user's perception of the interaction language:
a two-level model. CHI'83 Proceedings, SIGCHI, ACM.

Rasmussen, J. and Lind, M. (1981). Coping with complexity. In: Stassen, H.G. and Thi
j is, W. (Eds.), Proceedings of the First European Conference on Human Decision Mak
ing and Manual Control (Delft University of Technology, Delft)

Rohr, G., Keppel, E. (1984). Iconic interfaces: where to use and how to construct.
First International Symposium on Human Factors in Organizational Design and Manage
ment, Hawai.

Rohr, G., Keppel, E. (1985). Was sagt ein Bild? - Zur begrifflichen und bildlichen Ko
dierung komplexer Vorgaenge bei der Mensch-Computer- Interaktion. Bericht ueber
den 34. Kongress der DGfP 1984. Hogrefe, Goettingen.

Rouse, W.B. (1980). , System engineering models of human- machine interaction.
North-Holland, Oxford.

25

Tauber, M.J. (1984). Zur Spezifikation und Konstruktion von Help-Systemen. Notizen zu
Interaktiven Systemen 12, pp. 71-87.

Zemanek, H. (1982). Festvortrag 25 Jahre IFAC. In: Mitteilungsblaetter der oester
reichischen Computergesellschaft.

ON MODELS AND MODELLING IN HUMAN-COMPUTER CO-OPERATION

Horst Oberquelle

Universität Hamburg, Fachbereich Informatik
Schlüterstr . 70, D-2000 Hamburg 13

Germany

System designers take note . Design the system for the
person, not for the computer, not even for yourself .
Provide the user with an explicit model . '

D. A. Norman {Norman, 1981)

In the recent literature on human-computer communication {HCC) ' models' have become
a centra! notion . State/transition models of interactive systems are discussed again
and again (from Parnas (1969) to Jacob 11983)) , the sites/modes/trails model of
Nievergelt is praised as a solution for problems many users encounter
(Nievergelt, 1983), the model human processor is designed to analyse user behaviour
(Card, Moran ~ Newell, 1983), an abstract model of communication between two
partners has been applied to HCC {Oberquelle, Kupka ~ MaaB, 1983). There are lots
of other papers discussing conceptual models or mental models of interactive
systems, user models or the role of metaphors (see e.g. Carroll~ Mack, 1982) .
Obviously, humans need and use models of their "relevant system' to be able to plan
their actions and to control the obtained effects . As soon as several persons
cooperate their communication will be based on their respective models. Part of
their communication will serve to develop, to explain and understand models . To
communicate about models presupposes that models can be represented externally and
that the means of representation are known to the communicating parties .
Communication about modelling tools might be necessary in addition. All kinds of
modelling , forma! models included , are based on the human abiliti to communicate in
the informal mode inherent in natura! language (cf . Naur, 1982).

Users of computerized systems have great difficulties in acquiring adequate models
of the systems they are forced to work with . The development of systems for HCC is
not just the creation of programs according to some specification, but the design of
working situations for humans. That's why principles of both, hardware and cognitive
ergonomics, should be applied .
One basic principle is controllability {Troy, 1981) which means that the working
enyironment must be transparent and predictable and that the worker must be able to
influence it . Models of the working environment and modelling procedures can serve
exactly for this purpose.
Researchers in cognitive ergonomics are asked to improve the situation by looking
for suitable models, modelling tools and modelling procedures. But to date their
notions of model, relations between partial models and modelled aspects as well as
the purposes of models have not been discussed in a systematic way .
A suitable model of the system relevant for HCC research may help to evaluate
different proposals, to improve scientific communication and to give hints for
further research activities. A uniform representation technique for different but
related models might improve communication between researchers, designers and users .

Before going into the details of any specific model or representation technique the
following questions shall be answered (section 1):

• What do we mean by 'model' ?
• Which aspects of 'the relevant system' are covered by models ?
• What is the role of 'modelling tools' ?

27

In section 2 we show how the focus of interest in HCC has been extended in recent
years and illustrate this by means of nets. Today three major roles Cas abstractions
of agents with similar aims) influence human-computer interfaces: designer, dialog
system and user. For the researcher in HCC they detftrmine 'the relevant system',
which can be represented by a meta-model.
This model is taken as a framework according to which we discuss and classify some
models from the literature (section 3).
In view of the problems users have with systems and models predefined by others we
ask: "When, how, by whom and for whom are models developed and transferred ?" The
meta-model shows new ways of improving the modelling process. This will be discussed
in section 4. Section 5 indicates some open problems and gives directions for
further research.

1. HODELS, HODELLING PROCEDURES AND HODELLING TOOLS

The purpose of this section is to provide a common understanding of the notions
model, modelling procedure and modelling tool and their mutual relations. Hodels and
their characteristics are discussed first.

Several notions of 'model' are in use. Although they are all related we firstly want
to point out which of them is considered:

(i)

(ii)

(iii)

(iv l

a model of an axiom system,
an abstract description of the relevant aspects of a system,
a known system with structure and behaviour analogous to the
system under consideration, or
a prototypical system in the sense of 'model farm'.

Hodels in the sense of (iii) may better be called exact analogies. They area
special case of a metaphor. Hodels for HCC in the sense of (iv) do not yet exist.
They should be a goal of HCC research. Even a widely accepted 'model operating
system' (UNIX) does not have a 'model user interface' (Norman, 1981).
Since users and designers are primarily interested in using models to reduce the
complexity of real systems the second interpretation is the most appropriate one. We
can define it more precisely as follows:

A model is a communicable description
- of a certain aspect (the view)
- of a section of reality (the system)
- at soma level (of abstraction or detail)
- as perceived by a human being (model builder)
- which is to serve the purposes of its users .

In terms of mathematics, a model is a homomorphic image. It serves one basic
purpose: it reduces the complexity of reality by dividing it into the 'system' and
the irrelevant rest and by abstracting from certain details of the system (view,
level of abstraction). It allows its user to classify and explain phenomena of the
modelled system. For example, if the computer user has an adequate model of his
dialog system he can plan his actions and anticipate their effects; the system's
behaviour will be without surprise for him. Furthermore, he is relieved of learning
lots of details, since the model enables him to reconstruct the details mentally.
In two ways the boarder line of the modelled system and the chosen view are
important for the model user:

1. they restrict the action and thinking space excluding possibilities not taken
to be relevant by the model builder;

2. they show the wealth of possibilities provided inside the model .
As long as model builders and model users are identical or belong to the same group
(e.g. edp experts) restrictions set by the model do no harm.

28

Normally, several models of the same system are in use simultaneously; according to
different interests they describe different aspects or the same aspect at different
levels of detail. This situation is illustrated in Fig.1. To understand a system
from partial models it is of utmost importance that they can easily be related.

Two views of systems are aften reflected in separate models:

- the composition of the system out of simpler functional units
(statie, spatial structure),

- the behaviour of the system as a processor process schema
(dynamic, tempora! structure).

view2
1

1,
I I

i I
,0 model 3

I
I

î
levels

of

detail

t
environment

Fig. 1: Partial models of the same system

We do not want models to be forma! in genera! since not all model users need or even
understand formal models. But we demand that models are in principle
communicable, since adequate models are aften built and adjusted in the course of
communication .
Depending on the circumstances, models may be descriptive as well as prescriptive.
This difference of intentions helps, for example, to distinguish the above mentioned
interpretations (iiil and (iv).
The notion of 'model' as explained before does not presuppose that the modelled
system exists before the model is built. For example, usually the designer of an
interactive system creates a model in form of a specification which is of
prescriptive nature for the implementor(s) of that system. After a correct
implementation the specification can serve as a descriptive model for the user of
the system - if he or she is able to understand the designer's model at all.

Sometimes the internal organization and processes of a system
known in detail. Fora coarse description which allows to
behaviour sufficiently well it is not clear, whether it is a
definition or a suitable abstract analogy, Nevertheless, we
this type models, too.

or a component are not
explain the system's
model according to our
call descriptions of

Hodelling is the process of forming mental models of a special system or of
a class of systems fora special purpose,

29

This can mean three different things:
(a) the construction of a model by abstracting from a given system during its

usage;
(b) learning about models built by others .(including the transfer of models via

computers);
(c) creating a model prior to building a system based on experience gained from

(a) and (b) .
Learning a model built by someone else may evoke a special problem if the intentions
of model builder and model user are too different. In general, models are adapted to
changing needs during their usage forbidding a sharp distinction between a
modelling phase and a phase of model application. Updating or refreshing a model by
its forgetful user is a special case of adaptation.

The external representation of models is an auxiliary step for forming mental models
or for the construction of artificial systems. External representations make evident
whether one has got a clear understanding of the system under consideration.

Modelling tools are special description tools used for the external
representation of models in addition to natura! language.

Modelling tools may be graphics or forma! systems. To understand an externally
represented model one has to understand the modelling tools and the metaphors
behind them. Inappropriate tools may provide a bias in one"s understanding.
The learning of modelling tools is easier if the tools are based on few basic
concepts and can be applied to many situations, especially to situations well-known
to the learner.
To have good modelling tools does not necessarily mean to use forma! tools in the
sense of mathematics . Carefully chosen graphics combined with explanations based on
a precise and consistent terminology may be appropriate for certain groups of model
users, for instance for computer novices and their managers. Net representations we
are going to use belong to this kind of modelling tools.

2 . A META-MODEL OF HUMAN-COMPUTER CO-OPERATION

In order to improve the actual discussion on different aspects of HCC and as a
framework in which to search for new solutions for problems of HCC we want to
develop a model of the system which determines HCC. Relations to former views of
HCC are indicated. One can easily see that since the beginning of HCC the field of
interest has been extended in three dimensions:

- in space: adding new system components;
- in time: considering system creation and modification in addition to

plain system usage;
- in aspects: taking notice of pragmatic factors in addition to syntax and

semantics.

At the beginning of HCC machine language
computers. The "system" they were using was an
detail. On a very abstract leï11 its structure
and agencies as done in Fig.2 .

programmers were the only users of
automaton which they knew in every
can be modelled as a net of channels

~, A net of channels and agencies (CA-net) is
represent functional units (Q for channels, 0 for
represent the access rights of the agencies (@---0
write/put to C) . Only nodes of different types may be
are forbidden.

a directed graph whose nodes
agencies) and whose arcs
read/get from C, &---Q
connected. Isolated nodes

30

INPUT

STORE

OUTPUT

Fig. 2: The computer as an automaton
(CA-net representa t ion)

During the development of interactive systems virtual machines*) have been designed
which can be interpreted as refinements of the model in Fig.2 . A design which
was used for an early experimental system for interactive programming with a
dialog-specific frame and exchangeable kernels for different applications (RDSJ
(Kupka, 0berquelle ~ Wilsing, 1975) is shown in Fig . 3. The model primarily served
as a basis for the precise definition of syntax and semantics of the dialog
language . The separation of concrete input and output from abstract input and
output was provided for experimentation with semantically equivalent language
constructs. The syntax of inputs is state-dependent .

1o11a--,-1gene
l rato r

1
L __ _ _______ _J

_ PROCESSOR

Fig. 3 : Structure of the RDS system
(CA-net representation)

STORE

When pragmatic aspects were taken into account it became clear that a larger
had to be considered . This was reflected in the concept of an (abstract)
processing system (see Fig . 4) which is a model of a system with two active
(dialog initiator and dialog responder) both of which can represent a human

system
dialog
agents
or a

machine.
This statie model can be ' unfolded ' into a means/activity net**) (see Fig.5) which
can be used to introduce a general terminology for dynamic aspects of human -

* 1 Virtual machines describe the functionality of a system in terms of abstract
functional units and their behaviour . Implementation details and details of the
underlying hardware are suppressed .
**l In a means/activity net (HA-net) the flow of means (QJ through activities
(OJ is represented using the same graphic elements and conventions as in CA-nets .

31

computer dialogs (for details see Oberquelle (1980a)). For example, the concept of a
'dialog step' can be easily explained (see Fig.5). The same model underlies the
discussion of dialog styles, e.g. user initiated vs . system-initiated dialog steps,
by Dehning, Essig !. HaaB, (1981)) .

dialog
binding

dialog
initiator
(DI)

~
Fig . 4 : Dialog processing system

(CA-net representation)

r
1
1

start of'
the ~al~

dialog processing
task

l

1
dialog opening

~kn~wl_!2,g~en~

1

i---
_l

dialog
initiation

r-
1

1

1

r
1

1

dialog
task

1

_I

L- normal
1 dialog step

1
L

dialog ~ ,,......- - - 1-,-_1
__ ~

response~

r
1

dialog closing
task

1

I_
dialog closing t ack.nowledgement

response evaluation
and task f'ormation

t

1-- dialog
closing

end of
the dialog

task fulf'ilment
and response generation

Fig . 5: The dialog as a process
(HA-net representation)

32

In order to improve the situation of (edp-)naive users another situation was
analyzed: human - human communication (HHC) . One aim was to see whether HCC was
restricted in comparison with HHC and in what regard. The other was to look for new
ideas for the design of interactive systems. Both questions were discussed on the
basis of a model of communication between two abstract partners. The model reflects
six pragmatic characteristics of communication applicable to HHC and HCC (for
details see Oberquelle, Kupka, g, MaaB, (1983)).

(1) Communic'ation serves to co-ordinate (real and symbolic) actions of
several agents.

(2) Communication is determined by the objectives of all participants (inten
tions).

(3) Communication depends on comparable premisés for understanding (knowl
edge and conventions).

(4) Communication can refer to the communication process itself and to its
preconditions (metacommunication).

(5) Communication is always coupled with expectations concerning the partner
(partne·r model).

(6) In communication there is a trend towards economical behaviour.

Fig. 6: Six characteristics of communication

P1 r------7

L------ ENVIRONMENT

P2 r------ --,
1
1
1
1
1

Fig. 7: A model of two communicating partners
(CA-net and MA-net representation mixed)

The main restriction in HCC compared with HHC is that the communicating behaviour
of the computer is of algorithmic nature and that all its reactions have to be
planned in advance by its designer. For some users dialog systems may seem to be
independent communication partners, especially if users don't knowhow and by whom
they have been designed and programmed . If an interactive system is composed of
several components the combined intentions of their designers influence the human
machine interface. Users may interpret them as the intention of the dialog system .

33

Although dialog systems tend to become independent with own intentions (virtual
independence, virtual intentions (for details see Oberquelle, Kupka ~ MaaB
(1983)), it must be emphazised that the communicating behaviour of a dialog system
is caused by its designers through delegation. To communicate successfully with an
invariable system the human user has to adapt himself to its algorithmic
communicating behaviour. He can only modify it within the limits set by the
designer.

The communication model shows that two kinds of models play an important role in
communication: self images and partner models. In interpersonal communication these
models are partially built up and adjusted in meta-communication. Co-operative
partners help each other to develop adequate partner models.

Dialog systems, as well, can be thought of as having partner models and self images:
they adapt their behaviour according to stored user models and explain their own
facilities in reaction to HELP commands on the basis of a model of the system. The
realization that these models are created and put into the machine by the designer
leads to a further extension of the relevant system adding the designer as a third
component. The long-term processes running in this system are called human-computer
co-operation, including learning about modelling tools and models (e.g. from
documentation), delegation and HCC.

DESIGNER

USER DIALOG SYSTEM

ENVIRONMENT

Fig. 8: The meta-model of human-computer co-operation
(with an indication of different structural
models of the 'system')

34

The states of the three agencies of this meta-model can be refined according to the
communication model. The partner models and self images must be replaced by models
of those parts of the system known to the agencies and considered relevant for the
agencies' tasks. Fig.8 indicates quite different models which the agencies may have
of the whole system. The presented meta-model will serve as a background for the
following discussions.

3. ROLES AND EXISTING MODELS

The three roles of the meta-model, designer, user and dialog system, can be
characterized by their special interests in models . Models useful for the different
roles may differ in the degree of formality. After a presentation of role-specific
interests and restrictions some models described in the literature on HCC will be
evaluated .

The typical users of dialog systems (application expert, edp-naive) are interested
in a manageable model of a sufficiently large portion of the organization they are
werking in. This must include a model of the dialog system, of its user interface
and of other interfaces of the dialog system through which the user can influence
his environment or is influenced himself . These additional interfaces are mainly
application-dependent. The model can be described in terms of functional units,
states, means and activities relevant for the users' tasks.
Due to their little training in formal methods users will not be interested in
formal models as long as informal or semi-formal models allow to understand the
system. Graphic representations usually are preferred to strings ("1 picture tells
more than 1000 words.").
At present, users of interactive systems are in a difficult position when they try
to develop adequate models:

- Models or metaphors used in their traditional work cannot easily be applied to
computers (Halasz ~ Moran, 1982).

disappear behind the human-machine
suitable model during direct
The paperless office tries to make

- The objects they have to deal with
interface . The possibility to build a
manipulation of objects is almost lost .
this 'facilitation' perfect .

- Taking courses in informaties does not help very much since they usually
present the computer as seen by the programmer.

- System documentations are crammed with details. They seldom reveal the model
the designer has had in his mind - if he had one at all.
If a user has to deal with different subsystems it is nearly impossible for
him to develop a consistent model which covers all of them, since their
designers certainly will have used different models.

- left on their own, users are hardly able to develop suitable models. Even for
simple pocket calculators it seems to be difficult (Young, 1981) .

Today users can be content if explicit models are provided at all. However, if
models are too complex, they may exceed the memory capacity of the user. This can
lead to increased meta-communication about the model and distract the user from his
original task. Without such possibilities for meta-communication he will feel
uncertain and discontent, since he has partially lost control. The idea of actively
influencing model building in early phases of the development of dialog systems
seems to be unrealistic for most users today .

Up to now, the primary task of the designers has been to produce a formal model of
the planned dialog system, i.e. its specification, and to implement it by
programming and delegation.
One main difficulty is to bridge the gap between the vague knowledge about the
future users and about the necessary functionality on the one hand and the formal
specification on the other. The same kind of difficulty arises when the designers
try to explain the finished system to users - be it by written material or so-called
self-explaining systems .

35

They seem to be in a situation similar to that of an architect who is able to make
precise plans for brick-layers, electricians or plumbers, but has little means to
explain his design and its functionality to customers .
Semi-forma! methods established to improve user-designer communication seem to be
necessary.

The dialog
interests of
Each dialog
its designer .

system introduced as the third role in the meta-model (Fig.8) has no
its own. rt may contain models used for purposes set by the designer .
system contains at least implicitly the partner model and self image of

Explicit models inside the machine used to control its communicating behaviour must
be algorithmic ones. Models used for explanations only must be algorithmic as well ,
but they can use informal descriptions represented by text and graphics . All
explicit models are invariable after their delegation.

Models described in the literature are usually developed and used by designers. We
present a selection of them and discuss their range . Some of them are of interest
for users , as well.

The oldest class of models are finite state machines which are process models of the
dialog system (Parnas, 1969). They are created by designers to show all state
dependent possibilities users have for their inputs . In refined versions these
models are supplemented with descriptions of system reactions or effects which
inputs have on the stored data.
Such models are used on different levels of detail and formality ranging from rough
representations for teaching purposes (see Fig.10) to totally forma! representations
seeming more useful for the designer than for the user (see e . g . Jacob (1983)) .
The complexity of state/transition diagrams can be reduced , for example, by
hierarchical decomposition as done by Denert (1977) or by showing the correspondence
between sets of states and functional units which they belong to as done in Fig.9
andFig.10.

r-----1
1 1

1
1

1

1

1 f\1..A
S"fSTC:r'\ I

1

1 1
L ______ J

Fig . 9: Virtual machine fora Pascal programmer

Models as in Fig . 9 may be used to give the user an impression of the architecture of
the virtual machine he is communicating with (but only if the different components
are relevant for the user · s tasks) .

i nsert a
l i ne
oc • RET URN

del e t e n
charact
nD

edi t new fi l e

EDIT NewName

prin t a file
at termi nal

TYPE ...

de l e t e a
fi l e

DELETE

irregular
logen

36

edit o l d f ile f ini sh

EDIT Ol dName E

ask for
d i rec tor ies

DIRECT

de l e t e old
ve r s i ons

PURGE

Fig . 10 : State/transition net for a Pascal programmer
(section, following Kupka (1982))

The IFIP model of interactive systems (Dzida, 1983) describes the statie structure
of a system larger than it is covered by state machine models. With respect to the
meta-model it is the subsystem consisting of a user, the dialog system and their
organizational environment. System development and modification are not explicitly
covered.
The IFIP model is intended to give a standard refinement of the computerized part
and to allow an explanation of actually discussed concepts as partial abstractions
of it . For example, virtual terminals and interactive tools are one view (Fig.11),
application-independent dialog systems are a nother . See Fig . 12 fora representation

37

of the ROS system of Fig.3 in this view. Further refinements of
serve as a guideline for modularization and implementation.
organizational environment may help the user to get a better
entire werking situation.

the machine part may
Refinements of the
understanding of hi s

USER

\------
"virtual termi nal 11

ORAGANIZATI ONAL ENVI RONMENT

,---

11 interacti ve tool"

--,
1
1
1

Fig . 11: The IFIP model of interactive systems
(with 'virtual terminal " and 'interactive tool ")

1

1
L __________ J

"'-- dia log p r ocessor

r------7
1 1
1 1

1 1
1
1
1
1
1
1

1

J
too l =

appl icatio n pr ocessor

Fig . 12: The ROS system as an "applications-independent
dialog system · (frame) using a 'tool " (kemel)

The Model Human Processor (Card, Moran ~ Newell, 1983) is a very abstract structural
model of users (see Fig . 13). The associated activities are low-level . It allows
designers to analyse a user ' s information processing merely in terms of time . The
model and some psycho-physiological laws such as Fitt's law have been applied to
time and motion studies during the performance of editing tasks. This tayloristic
approach can be applied to optimize the interface with respect to the total amount
of time necessary for task accomplishment by means of different devices, such as
keys or mouse . For users this model is of little help , except for the recognition
that some designers view users as brainware machines.

d= CD

t=70 msec

Cognitive
Processor

38

d=1 500 msec

t=100 msec

m= CD

k=semantic m=3 chunks
k=acou s tic o r

v isual

m=1 7 c ha r
k=phys i cal

Fig . 13: Model Human Processor (slightly simplified)

The TOTE model of users (Dzida , 1982; Darlington, Dzida , & Herda , 1983) is a model
of the cognitive processes inside the user. IEST , ~PERATION, IEST, fXIT are the
components of a feedback loop describing the control of performance in terms of
cybernetics. It allows to distinguish mental activities on different levels and to
provide corresponding forms of dialog . The concept of 'excursion' developed on the
basis of the TOTE model describes a meta-communicative activity which can help the
user to build up an adequate model of a dialog system. 'Deviations' area means to
brush up the knowledge about a model learned before or to reassure a user of the
validity of his model. The resulting 'three tours model" (Fig.14) is a schema for
system activities which may help the user to understand his genera! possibilities
for acting .

Anticipating (or realizing) that users are forced to adapt themselves to the
algorithmic communicating behaviour of the machine H.-J.Hoffmann has proposed to
specify the future users (or at least their roles) by the same method that is also
used for program specifications: by abstract data types (Hoffmann, 1983). Although
this kind of interface description is advantageous for the designers it will be
intransparent for most of their contractors and for naive users because of the
applied modelling tool .

The "sites,
describe the
of objects
(trails) are

modes and trails ' model (Nievergelt & Weydert, 1980) is an attempt to
structure of the state of the dialog system in a uniform way . The space
(sites), the space of activities (modes) and the history of the dialog
hierarchical structures which can be operated on by a universa! set of

1

V1REC T
WAY

39

_________ .., return

--inform. STEPW1SE
request REFJ NEMENT
~

Fig . 14 : The "three tours model"

commands. Applications-specific objects and operations form subtrees of sites and
modes. lt is argued that the simplicity and uniformity of the whole model make it
easy for a user to understand the model and to act accordingly . Apart of the
system·s state is permanently represented on the screen in a fixed format reflecting
the model (Nievergelt, 1983). This makes meta-communication concerning the model
partially superfluous.

Finally, the desk-top model applied in modern personal computers (XEROX STAR, APPLE
LISA) tries to bring the state of the dialog system back to the user and to let him
quasi-directly operate on the visible objects. Meta-communication facilities are
realized by the same techniques as for ether objects and operations , by windows and
pop-up menues.

All models discussed have been built by designers or researchers and are heavily
used only by them . Most of the models cover only a small section and a special
aspect of the whole system covered by the meta-model. Users had hardly any influence
on the respective modelling processes.
Due to the traditional concentration on software production user-designer
communication has not been considered an important part in life-cycle concepts for
systems development. In the next section we will argue that possibilities for direct
communication between designers and users as indicated in the meta-model can be a
key for the improvement of HCC.

4. CO-OPERATIVE MODELLING

The discussion above has shown that one fundamental prerequisit for users ' control
of their werking situation is still missing : a systematic procedure to build and
learn adequate models of the computerized environment.
Instead of adhering to the old principle ' Know the user! · (Hansen , 1971) leaving
users in a passive rele, we propose to let users actively participate in system
development. This can be achieved by a co-operation of users and designers using
direct communication and by designing the dialog system as a transparent partner
with meta-communicative capabilities . The first step must be a modification of
attitudes.

40

Designers must leave their arrogant position of knowing always and in advance what
is goed or 'friendly' for users. They should learn that some of their attempts to be
'user-friendly' might be more confusing than helpful, e.g. the promise to deliver
'self-explaining' dialog systems,
The term ·self-explaining' itself is misleading:

• The explanations given are not given by the system 'itself' but are
explanations provided by the designer and are based on a model he thinks to be
goed for the user,

• Explanations are
modelling tools
description of

necessarily incomplete. The whole terminology and the
applied are not explained explicitly. For example, the
the input syntax in BNF notation is in no way self-explaining

fora user not knowing BNF,
• An explanation system can hardly check whether a user has understood the

explanations, Even sophisticated tutorial systems are helpless if a user makes
the same error again and again. They cannot switch toa meta-level to \ find out
the problem, The little success of computer-aided instruction should be a
warning for advocates of self-explanations,

Nevertheless, a decent explanation component is helpful in every dialog system,
especially after intensive training of the user.
A similar problem arises if the communicating behaviour of the machine is based on a
partner model, which adapts automatically to the users' behaviour, but is unknown to
the users. Since they are unable to find out by meta-communication what causes a
change of behaviour, users easily adept an anthropomorphic view of the dialog
system. This tendency is increased if natural language is used for meta
communication (Kupka, 1984). A wrong partner model in the user is the result.

Users and especially their employers, on the ether hand, must learn that highly
sophisticated systems cannot easily be described in familar terms and used without
special training - in contrast to the promises made in advertises. They should agree
to learn about new modelling tools and models to be able to master a dialog system
and for active participation. They should claim the right to talk to the designers
directly.

To achieve co-operative modelling we propose the following procedure.

To be prepared for participation users (or their representatives) have to learn
about some, at least semi-formal modelling tools. Nets as used in this paper are
goed for this purpose (Oberquelle, 1980a). They are simple graphic tools, which can
be applied to different aspects of organizations in genera!. They allow refinements
and abstractions as well as taking out substructures and embedding. Combined with
ether tools they can be used even for formal specifications.
That nets are a handy tool for communication between researchers, too, is
illustrated by the growing number of researchers using them (cf. Dzida, 1983;
Hoffmann, 1983; Tauber, 1984). Learning about nets as a tool can simply be done by
using them for situations known from the user's werking environment - as it was done
throughout this paper.

Before even thinking about implementation designers and users must develop a common
model of the intended werk situation . Partial models for different aspects will be
necessary in addition.

• One aspect is the statie structure:
The first step should be the development of a global CA-net model of the
organization the dialog system will be embedded in. It will especially refine
the organizational environment shown in the meta-model (Fig.8).
Refinements of some of the subsystems must be added. They show, for example,
the dialog system as an applications-independent part linked to tools and

41

channels for applications-dependent objects.
Extensible conventions, partner model and a subsystem for explanations as
special components for meta-communication should be provided right from the
beginning.

• As a basis for describing the dynamic behaviour three things are necessary:
For each channel the type of its objects must be defined. The design may
become simpler if only few types (e . g. strings and trees) are used.
The states of each agency relevant for interaction with its environment must
be found out and named carefully.
The activities of each agency must be identified and named. Meta-communicative
activities for exploration should be available in the dialog system in all its
states.

• The dynamics of each agency can be defined in three parts:
The first one describes the effects activities have on states (including
switch over to other agencies). The effect activities have on objects internal
to the agency can separately be described . State/transition nets and MA - nets
supplemented with verbal explanations can be used for these purposes.
Finally, the behaviour of each activity with respect to the agency · s
environment has to be defined. For each activity available in each state one
must know the kind of information necessary for its activation and the kind if
information sent to the invoker and the rest of the environment. The decision
about the syntactic form of inputs and outputs can be postponed.

• The characterization of subsystems as proposed above should include a
characterization of the user's role, i.e. what he is expected to do. This
provides a basis for the partner model to be put into the system. The
resulting partner model should be designed for user influence by letting him
change its state explicitly or by asking for his confirmation for state
changes proposed by the system .

To show the feasibility of the design and to improve the design and its models a
step of rapid protoyping should be provided.
The explanation component can be simulated since all people engaged at this time
know the system very well from other sources. The syntactic form of inputs and
representations of objects as outputs can be tested and defined at this time.

The full, efficient implementation fellows as the next step. Traditional methods of
software engineering can be applied. Now additional provisions for modelling are
necessary: The full explanation component must be carefully implemented, comprising
all models of step 1 at levels consistent with the partner model inside the dialog
system. It may be supplemented by examples or tutorials (cf. Tauber (1984)) and
should contain a personal notebook for the user for remembering interesting details,
e.g. about self-defined commands and objects. To allow immediate feedback to the
designers a separate 'complaints channel' may be provided.

Systems installation in the organization must be accompanied by a special training
for all users covering the modelling tools and the partial models developed in co
operation. Practical exercises give an introduction into the handling. Some of the
designers should work as instructors to get direct feedback from the users.

42

Systems adaptation to special user needs is always necessary. Part of it can be done
under direct user control by extending the conventions by new abbreviations, user
defined commands and special defaults. Parallel updating of the explanations must be
possible, e . g. using the user ' s notebook.
More fundamental modifications can only be done by the designers. Routine meetings
with users and evaluation of the ·complaints channel" will help to find out
problems. The models known to both parties will serve as a basis for competent
discussions .

The systems development procedure
in software engineering . They are
for co-operative modelling as
communicative functions provides
between designers and users .

5. OUTLOOK

proposed above contains elements vividly discussed
characterized by shorter feedback loops. The need
well as for transparent dialog systems with meta-

new arguments for increased direct communication

The role of the researcher has not been considered so far : From our point of view
the task of researchers is to support fair co-operation. First of all they can do
this by interpreting ·cognitive ergonomics in a wide sense, much wider than is
reflected in the term ·software ergonomics·, which is sometimes used as a synonym .
Researchers may help to develop adequate modelling tools and provide computerized
systems for handling external representations of models, e . g. net editors . If the
descriptions of models are stored and edited in the computer , it will be easy to put
them into the explanation component of the dialog system itself.

A second field may be the development of "model architectures · (in the sense of
meaning (iv)) and "model procedures· for algorithmic meta-communication which can be
adapted to special applications, a field not understood very well up to now.
A third possibility lies in the creation of tools for rapid prototyping built on the
basis of ' model architectures·.

The last, but possibly most important question is whether we have already found the
proper paradigms on which modelling tools should be based.
Possibly, many difficulties have been caused by using two very different paradigms.
Objects in channels inside the computer are usually treated as values ("data') which
are transported by copying. Objects outside are individual things (e.g. documents)
which flow from position to position .
Viewing a system as a set of agencies co-operating by the exchange of objects via
channels covers both paradigms . The underlying notion of object is the crucial
point.
Considering
individuals"

dialog systems as "generalized editors for structured, modifiable
(Oberquelle , 1980b) is one specialization of this view .

The concept of the so-called "object-oriented languages· like SMALLTALK can be
explained in this framework, too. SMALLTALK objects are individual agencies with
local channels. Systems are a set of objects co-operating by the exchange of
messages via a common channel. Whether these two or ether notions of object will
provide a better background for modelling is an interesting question.

Finally, I want to
fruitful discussions
Hamburg during the
this paper. Wolfgang

thank my colleagues Ingbert Kupka and Susanne Maae for the many
we had in our research group on man-machine communication in
last years and which deeply influenced the ideas presented in

Dzida and Susanne Maass provided helpful comments on a draft
version of this paper.

43

REFERENCES

Card,S.K. ,Moran,T.P . ,Newell,A. (1983). The Psychology of Human-Computer Interaction.
Lawrence Erlbaum , Hillsdale , London

Carroll,J.M. ,Mack,R.L.(1982) . Metaphor, computing systems, and active learning . IBM
Research RC 9636 , IBM, Yorktown Heights •

Oarlington,J.,Ozida,W. ,Herda , S.(1983) . The role of excursions in interactive
systems. Int. Journal on Man-Machine Studies, 18, 2 , 101-112

Oehning,W. ,Essig,H. ,MaaB,S. (1981). The adaptation of virtual man-computer
interfaces to user requirements in dialogs. Lecture Notes in Computer Science,
Vol . 110 . Springer, Berlin , Heidelberg, New York

Oenert,E. (1977) . Specification and Design of Dialog Systems With State Diagrams . in :
Morlet,E.,Ribbens,D.(Eds .) . Proc. International Computing Symposium. North-
Holland, Amsterdam, 417-424

Ozida,W.(1982). Dialogfähige Werkzeuge und arbeitsgerechte Dialogformen . in:
Schauer,H ., Tauber,M . J . (Eds.). Informatik und Psychologie . Schriftenreihe der
österreichischen Computergesellschaft, Vol.18, Oldenbourg, Wien, München, 54-86

Dzida,W. (1983) . Das IFIP-Modell für Benutzerschnittstellen . Office Management ,
Sonderheft "Mensch-Maschine-Kommunikation, Vol.31, 6-8

Halasz , F.G. ,Moran , T. P. (1982) . Analogy considered harmful . in : Moran,T.P. (Ed.). Eight
Short Papers on User Psychology. XEROX PARC, Palo Alto, 33-36

Hansen,W.J.(1971). User engineering principles for interactive systems.
Proc. AFIPS Fall Joint Computer Conf., 523-532

Hoffmann,H . -J. (1983). Anwendung von Spezifikationstechniken auf die Komponente
Bediener eines interaktiven Systems . in : Schauer,H . , Tauber,M . (Eds.). Psychologie
des Programmierens. Schriftenreihe der Österreichischen Computergesellschaft
Vol.20, Oldenbourg, Wien, München , 211-251

Jacob,R.J . K. (1983). Using Forma! Specifications in the Design of a Human-Computer
Interface. CACM 26, 4, 259-264

Kupka,I . (1982). Programmstrukturen I. Lecture Notes. Universität Hamburg,
Fachbereich Informatik

Kupka , I . (1984) . Algorithmische Metakommunikation . in: Schauer,H . , Tauber , M. (Eds.).
Psychologie der Computerbenutzung . Schriftenreihe der österreichischen Computer
Gesellschaft, Vol . 22 (in preparation)

Kupka , I . ,Oberquelle,H. ,Wilsing,N. (1975) . An Experimental Language for Conversational
Use; Universität Hamburg, Institut für Informatik, Bericht Nr. 18

Naur,P . (1982). Formalization in Program Development . BIT 22 , 437- 453
Norman,D . A. (1981) . The Trouble with UNIX. Datamation, Nov. 1981, 139-150
Nievergelt,J.(1983) . Die Gestaltung der Mensch-Maschine - Schnittstelle. in:

Kupka,I . (Ed .). GI - 13. Jahrestagung . Informatik-Fachberichte, Vol. 73, Springer,
Berlin, Heidelberg, New York, Tokyo, 41-50

Nievergelt,J.,Weydert,J.(1980) . Sites , Modes , and Trails : Telling the user of an
interactive system where he is, what he can do, and how to get to places . in:
Guedj , R. et al. (eds .). Methodology of Interaction . North-Holland , Amsterdam,
327-338

Oberquelle,H. (1980a). Nets as a Tool in Teaching and Terminology Work . in :
Brauer,W . (Ed.) . Net Theory and Applications . Lecture Notes in Computer Science,
vol. 84, Springer, Berlin, Heidelberg, New York, 481-506

Oberquelle,H . (1980b). Benutzergerechtes Editieren eine neue Sichtweise von
Problemlösen mit OV-Systemen . in: Hoffmann,H.-J. (Ed .): Programmiersprachen und
Programmentwicklung. Informatik-Fachberichte , Vol.25, Springer, Berlin, Heidel
berg, New York, 211-220

Oberquelle,H. ,Kupka,I. ,MaaB,S . (1983) . A View of Human-Machine Communication and Co
operation. Int . Journal on Man-Machine Studies 19, 4, 309-333

Parnas,D . L. (1969). On the Use of Transition Diagrams in the Design of a User Inter
face for an Interactive Computer System. Proc. ACH 24th Nat . Conference , 378-385

Tauber , M.J.(1984) . Zur Spezifikation und Konstruktion von HELP-Systemen. GI Fach
gruppe ' Interaktive Systeme' (Ed.) . Notizen zu Interaktiven Systemen 12 , 71-87

Troy,N. (1981) . Zur Bedeutung der Stresskontrolle. Experimentelle Untersuchungen über
Arbeit unter Zeitdruck. ETH Zürich, Dissertation

Young,R.M . (1981). The machine inside the machine: user s models of pocket
calculators . Int. Journal of Man-Machine Studies, 15, 51-85

INFORMATION SYSTEMS DESIGN METHODOLOGIES AND THEIR
COMPLIANCE WITH COGNITIVE ERGONOMY

1. INTRODUCTION

Roland Traunmuller

Institut fur Informatik
Johannes Kepler Universitat Linz

As methods and tools for the design of information systems have mushroomed in
recent years, IFIP has carried out a review process on the methodological devel
opment (CRIS - Comparative Review on Information Systems Design Methodologies
/1,2,3/). Based on the author's participation in the review process a precis of
pivotal methodological approaches is given. According to the scope of this sym
posium /4/ topics relevant to cognitive ergonomy are stressed.

So the following sections focus on four subjects:
reasons for the development of methods and methodologies (2,3);
pivotal approaches and methods for the design (4,5);
topics of product models and process models with relevance to cognitive ergonomy
(6,7);
information modelling as an example for methodological issues
(8).

2. THE NEED FOR METHODS AND METHODOLOGIES IN INFORMATION SYSTEMS DESIGN

2.1. The need for methods in information systems design

In the beginning systems analysis and programming were considered rather ar
tist-like professions. From the procedures used bey these artist-system analy
sis some have become techniques and subsequently in establishing theoretical
background have developed into methods.

The underlying pressures leading to industrial-like production methods can be
outlined as fellows:
The result of the design is a blueprint of a technical product and has to fulfil
certain requirements. It is a must to have the design constructed in a reliable
way and by use of commonly accepted technical methods;
The design of an information system is too huge a task to be to be done by one
designer alone. Soit is necessary to split the global task into separate ones.
Furthermore the work has to be organized and controlled, rendering each task
provable and each design exchangable; No technical product of a higher degree of
complexity being achieved in one single step, verifiable checkpoints marking in
termediate products have to be defined;

45

Information systems comprise a huge investment and have high impact on organiza
tions. It would be frivolous to have them built without first having carefully
checked the blueprint. It must be evaluated against a set of criteria designat
ing the quality of design;
Documentation being of high importance the need fora sound methodology and a
common accepted terminology becomes urgent;
Computerized design aids (tools) also press for the development of methods that
can be combined and concatenated via defined interfaces.

2.2 The need fora methodology covering the design methods

The fast growth of the field has resulted in a huge number of methods and also
has led to terminological confusion:
many methods are ill defined and often mere techniques lacking a methodical ba
sis;
a diffuse terminology uses the same term for different things and vice versa;
since many methods only cover small sectors of the life cycle, concatenation of
methods at thoroughly defined interfaces becomes vita!.

It is a law in the development of sciences that meta-methods become necessary
when terminological differences and competing methods spur confusion . Some
methods proposed are also called methodologies by their authors to pronounce the
fact that they consist of more than one method or that they comprise very dif
ferent aspects.

There are three fields of computer science from which methodologies have
emerged:
System analysis: The main development has come from system analysis with tech
niques gaining amore concise and powerful background;
Database design: Information systems are marked by their abundance of data and
database design has attracted major attention. So many methods start with the
description of objects and a definition of the data representing them;
Software engineering: There is an overlap between information systems design
methodologies and software engineering with both fields comprising requirements
definition and specification.

3. BASIC CONCEPTS USED IN INFORMATION SYSTEMS DESIGN METHODS

Very early basic concepts have been established (cf. /5,6/ for an elaborate de
scription):
life cycle, a concept defining phases with exact interfaces breaks down the ove
rall task in better manageable pieces;
abstraction, a process intended to reduce complexity by stepwise development ex
cluding less relevant features;
database levels, a concept developed by ANSI/SPARC, is intended to reduce the
complexity of the data world;
project management, a procedure ensuring planning and decision and enforcing
control in the design process.
These concepts build a rough guideline for the design process providing an ade
quate framework for description as is shown in figure 1. Recent investigations

ABSTRACTION

Figure 1

46

DATABASE LEVELS
objects / activities

information flow
externalj

conceptual 1

database/ program

LIFE CYCLE

business goals and activities

change analysis

gross concept

feasibility study

requirements definition

specification

Basic concepts used in design methods
(cf. section 3)

47

give new insight into these concepts and the design process is attracting new
interest as will be discussed in section 6 .

4 . PIVOTAL APPROACHES OF INFORMATION SYSTEMS DESIGN METHODS

4 . 1 General remarks

A wide variety of methods has been covered by the CRIS review /1,2,3/ and fur
ther surveys (eg. /7,8,9/). It is difficult to classify because some boundaries
are artificial and many methods converge by a vivid cross fertilization of
ideas. Looking at the basic assumptions five mainstreams may be recognized:
procedure oriented approach;
data oriented approach;
behaviour oriented approach;
prototyping approach;
logical modelling .
The basic assumptions underlying this categorization will be discussed in the
subsequent sections using figure 2.

4.2 Procedure oriented approach

Methods routed in systems analysis techniques usually start with the description
of the business functions that are then breken down hierarchically. Functions
described as boxes on higher abstraction level are detailed on lower ones. By
adopting the requirements points of view and extensively using graphical repres
entations, procedure oriented methods have proved themselves as excellent vehi
cles in communication to the non-professionals. But lacking formalization they
ar·e less prone to automatization. There are well known methods using the proce
dure oriented approach :
ISAC /10/ that will be sketched as an example in section 5;
SADT /11/ that has gained very braad practical experience.

4 . 3 Data oriented approach

In the data oriented approach main interest is put on statie properties and the
conception of database . From there subsequently business functions are modelled
in interpreting the functions as transactions changing the database . So the data
oriented approach is somewhat complementary to the procedure oriented one where
the designer starts with the business functions and at last comes up with a data
model.
Due to the fact of more than a decade of database research many techniques have
been developed, some of them turning into elaborate methods:
NIAM /12/ uses a binary data model and will be shown as an example; ACM/PCM /13/
is a very elaborate database design method on the verge of the behavioural ap
proach.

4.4 Behaviour oriented approach

In the behaviour oriented approach the basic concepts are events triggering
state transitions on certain conditions. There are some similarities between

48

this approach and the data oriented one. The main difference is the interest in
dynamic properties- while the data oriented approach is only interested in
states and transitions relevant to the interpretation of business functions, the
behaviour oriented approach tries to comprise the totality of possible transi
tions and comes close to such concepts as data encapsulation and abstract data
types. As a result of the sophisticated proceeding the specification becomes
very voluminous.

PSL/PSA /14/ may be judget as an early forerunner of this approach. It has
gained some acceptance in practice but also lost theoretical interest on grounds
of conceptual inconsistencies. Further methods are:
REMORA /15/ that will be used as an example;
IML /16/ a Petri net formalism on state conditions;
ACM/PCM /13/ already mentioned in the preceding section.

4.5 Prototyping as an experimental approach

Prototyping is the procedure of constructing a crude system in an experimental
way. There are two goals: having a crude version, neat specifications may be
drawn; and by showing the system to the user requirements can be inspected.
Both advantages are sometimes debated: Will the user abandon a running proto
type? Can correct specifications be derived from sloppy ones? Prototyping in
cludes some more and less methodical attempts:
USE /17/ builds an interactive information system based on a relational database
and stresses the first point;
BOP /18/ uses APL-modules for rapid prototyping and is dedicated to the second
goal.

4.6 Logical modelling at the conceptual level

It is evident that some advantages of prototyping might also be achieved by in
specting in a model the logical structure of the system in question. So concep
tual modelling during early phases of a project has been suggested as a mode of
mental prototyping. The paper-and-pencil-prototyping has streng and weak
points as well: an advantage is surely avoiding having to build the actual pro
totype; having no actual prototype misses the opportunity of having the user in
terface checked.

Logica! modelling on the conceptual level has been suggested by Bubenko in CIM
/19/. His proposals are important in an additional way by establishing links be
tween design methodologies and the wide fan of developments in AI (eg. logical
programming with PROLOG).

5. A SKETCH OF SOME PIVOTAL DESIGN METHODS

5.1 General remarks

In the following some pivotal design methods corresponding to the approaches
discussed in the previous section are described. Due to the fact that in the
literature /1/ each method needs a voliminous description of fifty pages or

49

1
objects

information flow

a-graphs

i-graphs

database --- c-graphs

Infological model Constructs in ISAC

a) Procedure oriented approach

a~ ~child-of (enueï-uy H CHILD

going to caring-of

located-in named

location-of name-of hometown-of

,,
"

/ '
,...

I \
I \ , / '

\
1
\

'

WELS
J

ROLAND 1

' J
~ THALHEIM /

I
' /

...... ,/ - -- ' /

,,.-,
NOLOTO

r I
Notations in NIAM: LOT'-/

Bridge- and Idea-type 1-----1-
b) Data oriented approach
Figure 2 : Pivotal approaches and methods

(cf. section 4 and 5)

50

8
f\

Modify
Operation

I
Ascertain Trigger

Notation from REMORA

c) Behaviour oriented approach

~
~Crude design

d) Implementation of
Prototype (USE)

----..
e) Conceptual information

modelling (CIM)

✓ Refined design

specification

d) and e) Prototyping and Logica! Modelling approach

Figure 2: continued

51

more, the following lines can only give a very rough impression of some basic
features (cf. figure 2).

5.1 A procedure oriented approach: ISAC

ISAK /10/ has been developed by the Langefors school based on the original info
logical approach. According to it three graphs are constructed representing the
levels:
A-graph for activities at the object system level;
I-graph for the information flow;
C-graph for components at the datastructure level.
The ISAC method deals very thoroughly with the activities on the object system
level to enforce change analysis. At the beginning current problems, situations,
and needs are studied to prepare change alternatives. The authors stress the
fact that change analysis in some big projects led to abstaining from further
computerization.

5.3 A data oriented approach: NIAM

NIAM /12/ has been developed by Nijssen as a comercial product for CDC. It is
based on a data model with binary associations that has also been proposed by
ISO. The basic procedures in NIAM are the following:
describe the object system;
describe the information flow in elementary sentences;
transform these elementary sentences in a data model with relation- like binary
associations;
represent the data model to the non-professionals by graphs and to the system
builders by a specification language (RIDL).
The example in figure 2 is drawn from the regulations on school commuting allow
ances. According to Austrian law a subsidy is granted to those parents caring
for children attending a school outside home location /20/.

The transformation from sentence to association is crucial and sa NIAM has a
sentence model enriched by expressions for types and constraints:
LOT: Lexica! object type like surname, town-name, etc.;
NOLOT: Nonlexical object type like person, town, etc.;
Roles: Predicates like "lives-in";
Constraints: Identifiers, subsets, equality, uniqueness, disjoint.

5.4 A behaviour oriented approach: REMORA

REMORA /15/ has been developed by Colette Rolland at the Sorbonne with the in
dustrial background of Thomson-CSF. In REMORA the following distinctions are es
sential:
Categories of phenomena: objects, events, operations;
Categories of associations: Modify, ascertain, trigger;
Categories of relation types: C-object, c-operation, c-event;
Statie subschema: C-objects;
Dynamic subschema: C-operations and c-events.

52

5.5 A prototyping method: USE

USE /17/ has been developed by Wassermann at the university of San Francisco and
is intended to introduce prototyping as an aid to analysis and specification of
interactive information systems. The prototyping is supported by some computer
ized tools:
TDI: Transition diagram interpreter modeling the user dialog;
TROLL: Relational database management system;
USE Control System: A support for the coupling and design of various modules.

5.6 A logical modelling method: CIM

CIM /19/ delivers a high level conceptual description in a language with a pred
icate-calculus-like syntax. Objects are described using types and an elaborate
time model.

6. DESIGN PRODUCT AND COGNITIVE ERGONOMY

6.1 Product models

The goal of the design is a product model that can be used as a blueprint for the
building of the system. Hence the product model is aimed at three different
goups of persons:
The builders who use the product model as a blueprint for implementing the final
system;
the managers of the enterprise who formulate the objectives and provide the mon
ey;
the future end-users who hopefully have their representatives included in the
discussion.

6.2 Constituents of a good product model

Design methodologies have put main emphasis on the product model. A wide spread
of desirable features has been formulated in /2/. They can be summarized in
four clusters of features.

Technical soundness: Technical soundness is a sine qua non of the design process
and comprises various competing attributes. Up to now technical soundness has
been a prior concern in design methods and has been reflected in such questions
as:
Check whether the specifications meet the requirements stated?
Are there design flaws and incompleteness in design?
How robust is the design?

Economie success: Economie reasons have an overall stimulus on the development
of methods, but it is difficult to allocate gains. Nevertheless methods feel an
economie drive:
the broader the use of tools the more urgent the methodical background; overall
gains often can only achieved by a concatenation of methods that is inversely
dependent on progrees in methodologies.

53

Organizational synergy: The succes of early system analysts was largely based on
their intuitive feeling in juxtaposing technology and organization. This is no
langer the case in computer aided methods, where the intuition has to be re
placed by new ways of socio-technical engineering.
Large information systems might overwhelm any solution based on intuition;
new technical systems, as eg. office systems, are toa complex to be constructed
in a way that is adding technology to organization.

Cognitive ergonomy: Although questions of organizational ergonomy very early
struck the developer's mind, cognitive ergonomy only recently has gained atten
tion. The subsequent section will deal with some issues that link information
systems design methodologies with cognitive ergonomy.

6.3 Topics relating design products to cognitive ergonomy

Regarding design as a product four questions touching cognitive ergonomy can be
located:
communication with the builders;
communication with the managers;
communication with the endusers;
visualisation of the information.
These issues are covered in a different way by the diverse approaches. In fig
ure 3 an indication is given showing the level of consideration attained.

Communication to the builders: Design as a blueprint is primarily targeted at
the builders. Questions of communication have been tackled since the very begin
ning . Diagrams, graphs, and prose are widely used with more formalized methods
gaing ground . It is the old dream of automatic programming that by feeding a
specification into an automaton the builders/implementors become obsolete.

Communication with the managers : System analysts alway have been aware that com
munication with the clients has the highest priority. A lot of graphic methods
and techniques have been developed. But there is a serious pitfall in all
graphical methods, sometimes nicknamed "boxology". Everything can be written
into a box or close to an arrow - no consistency is checked or guaranteed. As a
consequence there is a trade-off in every method between the communication with
the builder and the communication with the clients.

Communication with the end user : A different type of client is the end user. It
is essential that the gross product model of the future information system is
also presented to the prospective end users. User participation is intended to
ensure a representation of end users in an institutionalized way . There is an
intrinsic problem: the end users have to be envolved in an early stage, but they
need elaborate models of the future system to anticipate its acceptance . Pilot
ing and prototyping have emerged as an answer to this problem.

Visualisation of the information : Planning the detailed visualisation as cited
in the last paragraph is beyond the scope of most methods. The only exception is
prototyping.

54

ISAC NIAM REMORA USE

communication with the builders * * ~)(~ *
communication with the managers 1l ~ :,t * * ~
communication with the end users ~ *
visualisation of information ~ ~

evolutionary design * ~ tl

trial and error *
abstract ion ~ * *
assistance by tools * jf- * * ~
linkages to AI ~

Figure 3 Topics relating information systems design methodologies
to cognitive ergonomy (cf. section 6.3 and 7.3)

The marks blank, asterisk, double asterisk indicate the
level of consideration gained.

CIM

7f *
*

J#- ~

~ 11

1'-

7' ""

55

7. DESIGN METHODS AND COGNITIVE ERGONOMY

7.1 Process models

The term design is ambiguous, meaning both the product and the process. From
the beginning main interest has been directed towards design as a product reduc
ing the aspects of the process toa basic framework of life-cycle, abstraction,
database levels, and project management (cf. section 3). Now growing attention
is paid to models of the process(eg. /3,21/). Thus new questions are conveyed
into the researcher' s scope, reflected by the establishment of an IFIP task
group dedicated to the topic of understanding the design process /22/ .

7.2 Prescriptive and descriptive process models

Prescriptive process models lay down how the designer shall proceed. The basic
framework has been extended or detailed in almost every method. For the ab
straction process some extensions already have been mentioned:
ISAC: an elaborate activity level focussing on alternatives;
NIAM: an information flow mapped in a sentence model;
CIM: a conceptual specification preceding the classical design.

Descriptive process models describe what the designer actually does when he de
signs. Descriptions are based on the level of behaviour with some attempts to
investigate the underlying cognitive processes. First findings indicate a se
vere deviation from the way hitherto claimed as normative. Nearly every project
has its individuality forming its own ways of organizing, proceedings, documen
tations, and standards. The result makes obvious a categorization of process
models:
scale of the information system; type of the problem as eg . technica! or admin
istrative;
type of the system as batch, online, distributes, etc.;
start from scratch or embedded system; skill of the designers.
Investigation in de facto design has put streng arguments in faveur of the cog
nitive model chosen first being decisive for the subsequent process and giving
only "token service" to alternatives /23/. This result finds its correspondence
in cognitive models of problem sol ving /24/.

7.3 Topics relating process models to cognitive ergonomy

Figure 3 also includes those topics that relate design as a process to cognitive
ergonomy.

Evolutionary design: It is important to plan the process evolutionarily. Design
is an open-ended activity aimed at the building of adaptable systems. Evolution
ary design takes into consideration the fact that the users are unable to ex
press all their needs and that the requirements are constantly shifting as well.

Trial and error: Even if all requirements stated before are observed, the final
product may not find acceptance. Trial and error, a basic strategy for solving
small problems.

56

evidence

/ \.
model real world

/ --~
predictions

a) Artificial intelligence

specification requirements

l
schema

~
real world

ds,sbsso /

b) Database design

implementation ..-

c) Programming languages

Figure 4 Different view of the abstraction process (cf.section 8.1)

57

Abstraction: Information modelling at the conceptual level is the core part of
the abstract ion process. Some questions recently gaining attention are dis
cussed in the subsequent section 8.

Assistance by tools: The transparency of the design process can be largely en
henced by adequate visualisation and documentation. For both points computer as
sistance is the only way of doing it.

Linkage to artificial intelligence: Taking into account the spectacular devel
opments in artificial intelligence, methods that can be linked are going to gain
an advantage. The advantage is mutual: design methods can be improved and arti
ficial intelligence may use design methods in tackling large systems.

8. INFORMATION MODELLING AS AN EXAMPLE OF METHODOLOGICAL ISSUES

Information modelling is the core part of the design process and has gained viv
id consideration in all methods cited. There are some meta issues arising that
will be discussed in this last section: the different view of the abstraction
process in artificial intelligence, database design, and programming;
the proposal of a reference schema by ISO;
the abstraction system as the rnental picture of the universe of discourse.

8.1 Different views of the abstraction process

The process of information rnodelling has been seen differently in artificial in
telligence, database design, and programming /25/ (cf. figure 4):
Artificial intelligence is concerned with modelling human thinking. The model
and the human both make predictions about the real world . The model is success
ful if the predictions are indistinguishable from the human's prediction (Tur
ing);
Database modelling emphazises states with peoples as agents of transactions. Da
tabases comprise large amount of formatted data, the rneaning of which is well
understood;
Modelling in programming is concerned with the engineering of software and sees
programs as agents implicitly defining states.

8.2 A reference schema for information modelling proposed by ISO

Every method in question has its wayof abstracting . So the International Organ
ization for Standardization has put forward a proposal fora reference schema
/26/ (cf. figure 5), cornprising:
the universe of discourse, as the portion of the real world to be modelled;
an abstraction system, including the classes, rules, etc. of the UoD;
an object system, as the part of the UoD not contained in the abstraction sys
tem;
a conceptual schema, as the description of the abstraction system;
an information base, as the description of the object system;
a universe of discourse description, comprising the conceptual schema and the
information base.

58

abstraction system

conceptual schema

information base _3--,,,___ _____ __,
object system

Processes:

universe of discourse
(UoD)

universe of discourse
descript ion

(1) Classification, abstraction, generalization, rules
(2) Representation of the abstraction system (writing down the rules)
(3) Representation of the object system (recording facts)

Figure 5 A reference schema for conceptual modelling proposed
by ISO (cf. section 8.2)

59

8.3 The abstraction system as the mental picture of the
universe of discourse

The abstraction system is extracted from the object system in building classi
fications, abstractions, generalizations, rules, etc. This is a human process
establishing a shared mental picture of the universe of discourse. It is an im
portant question whether this should be done by the professionals or the specif
ic field of application. The author's investigations in the field of modelling
legal regulations /27/ have led to the conclusion that up to now the engagement
of the computer scientist has been the decisive factor in every successful mod
el. In the future there must be a change because it should be the layman who sets
structures and definitions in his own field. Hopefully, education in computer
literacy and the institutionalization of user participation will shift the bal
ance to the middle.

60

REFERENCES

IFIP CRIS 1: Conference on Comparative Review of Information System Design Meth
odologies, Noordwijkerhout, May 1982, Proceeding T.W. OLLE, H.G. SOL, A.A.
VERRIJN-STUART (Eds.), North-Holland, Amsterdam, New York

IFIP CRIS 2: Conference on Feature Analysis of Information System Design Method
ologies, York, July 1983, Proceedings T.W. OLLE, H.G. SOL, C.J. TULLY (Eds.),
North-Holland, Amsterdam, New York

IFIP CRIS 3: Intermediary Report on the IFIP CRIS 3 Task Group, (Chairman: T.W.
OLLE), Linz, September 1984, Preliminary report

MIND AND COMPUTERS: Second European Conference on Cognitive Ergonomics, Septem
ber 1984, Gmunden/Austria, Proceedings T.R.G. GREEN, M.J. TAUBER, G.C. VAN
DER VEER (Eds.), Informatik-Fachberichte, Springer, Berlin, Heidelberg, New
York, Tokyo

H.J.SCHNEIDER: Lexikon der Informatik und Datenverarbeitung, Oldenburg, Muen
chen, Wien, 1983

P.LOCKEMANN, A. SCHREINER, H. TRAUBOTH, H. KLOPPROGGE: Systemanalyse, Spring
er, Heidelberg, New York, 1983

M.PORCELLA, P. FREEMAN and A.I. WASERMANN: Ada Methodology Questionaire Summa
ry, Software Engineering Notes, 8, January 1983

H.BALZERT: Methoden, Sprachen und Werkzeuge zur Definition, Dokumentation und
Analyse van Anforderungen an Software- Produkte, Informatik-Spektrum, 4, Au
gust and October 1981

P.T.M.LAAGLAND: Modeling in informations systems development, Akademisch
Proefschrift, Vrije Universiteit te Amsterdam, 1983

M.LUNDEBERG: The ISAC Approach to Specification of Information Systems and its
Application to the Organisation of an IFIP Working Conference, in /1/

D.T.ROSS and K.E. SCHOMAN: Structured Analysis of Requirements Definitions,
IEEE Trans on SE, January 1977

G.M.A.VERHEIJEN and J. VAN BEKKUM: NIAM: an Information Analysis Method, in /1/
M.BRODIE and E: SILVA: Active and Passive Component Modelling: ACM/PCM, in /1/
D.TEICHROEW and E.A. HERSHEY: PSL/PSA: A Computer Aided Technique for Structured

Documentation and Analysis of Information Processing Systems, IEEE on SE,
January 1977

C.ROLLAND and C. RICHARD: The Remora Methodology for Information System Design
and Management, in /1/

G.RICHTER and R. DURCHHOLZ: IML-inscribed High-Level Petri Nets, in /1/
A.I.WASSERMANN: The User Software Engineering Methodology: An Overview, in /1/
O.JORDANGER: BOP Prototyping-User's Guide, SINTEF-Report STF17/A811012, SINTEF,

Norway, 1981
M.R.GUSTAFSSON, T. KARLSSON and J.A. BUBENKO, JR.: A Declarative Approach to

Conceptual Information Modelling in /1/
R.TRAUNMULLER: Lecture Notes in Administrative Data Processing, Universitat

Linz, 1983
G.RZEFSKI: Same Philosophical Aspects of System Design in R.TRAPPL (Ed.): Cyber

netics and Systems Research, North-Holland, Amsterdam, New York, 1982
IFIP TC 8: Report on the Task Group "Understanding the design process" (Chair

man: R. TRAUNMULLER), London, April 1984, Preliminary report
G.RZEFSKI: private communication
M.J.TAUBER: Programmieren und Problemlosen - eine Analyse der begrifflichen Be

deutung in der Psychologie wie in der Informatik, in H. SCHAUER, M.J. TAUBER:
Psychologie des Programmierens, Oldenburg, Muchen, Wien, 1983

ACM: Proceedings of the Workshop on Data Abstraction, Databases and Conceptual
Modelling, Pingree Park, Colorado, June 1980, Sigmod Record 11, February 1981

61

ISO: Concepts and Terminology for the Conceptual Schema, Preliminary Report ISO
TC97/SC5/WG3, ANSI, New York, 1981

R.TRAUNMULLER: Methoden zur Entwicklung von Anwendungssystemen: Eine Antwort
der Informatik auf die Anforderungen neuer Anwendungen, in: R.TRAUNMULLER,
H. FIEDLER, K. GRIMMER, H. REINERMANN (Hrsg.), Neue Informationstechnologien
und Verwaltung, Informatik- Fachberichte 80, Springer, Berlin, Heidelberg,
New York, Tokyo, 1984

INTRODUCING STATISTLCAL COMPUTING - EVOLUTION OF
THE COGNITIVE SYSTEM OF Tt{E NOVICE USER

Gerrit van der Veer*, Bert van Muylwijk+, Jan van de Wolde+

*Vrije Universiteit, Amsterdam
+T.H. Twente, Enschede

Netherlands

ïne project that is reported in this paper is a pilotstudy. The main goal is the
development of a method to investigate real life situations in which novices receive
an introduction toa computer system, determining the interrelations between:
- characteristics of the student;
- strategy and content of the course;
- development of a model of the system in the student's mind.

If this investigation takes place in an existing course. the investigator is normally
not allowed to interfere with the teaching method or with the curriculum. The
investigation therefore will not have the character of an experiment, the testing of
hypotheses will not be a central goal. A description the phenomena is the main
result, the teaching strategy (and the subject matter of the course, the task
domain for which the system is introduced) not being a variable in the individual
study. The results of these sources may only be speculated upon, albeit that com
parison with similar studies in the long run will result in clarity about the rela
tions (Eason, 1983). The authors plan to repeat this study with a number of dif
ferent institutions for other task domains.

1. INTRODUCTLON

1.1. Models

The proliferation of digital computers in the past few decades coincided with a
paradigm shift in psychology from a behavioural toa cognitive approach. At the
very heart of the latter approach lies the conviction that human behaviour cannot be
properly understood or predicted without paying attention to the way the outside
world is being represented inside the head of the agent. Just like the output of a
computer, the behaviour of a human agent cannot be explained solely on the basis of
the input. You need to knowhow incoming data are being interpreted and processed
in order to account for the variation in responses to these data. Cognitive
psychologists have introduced numerous concepts to refer to such processes, e.g.
schemata, semantic networks, mental models, entailment structures. This variety in
terminology gives way toa lot of confusion since many of these (hypothetical) con
structs share connotations. To add to this confusion labels like 'mental models'
are used by different authors to refer to different !Qatters. In discussing the role
of mental models in the process of man-machine interaction Norman (1983) offers a
nomenclature that we will adopt here just for the sake of clarity. He distinguishes
the target system, the conceptual model of this target system, the users mental
model of the target system, and the cognitive scientist's conceptualisation of that
mental model. Conceptual models are invented and used by teachers, designers and
engineers as opposed to mental models, that evolve naturally through interaction
with the target system. It is not really clear whether mental models can be con
ceived of without making implicit references to the scientist's conceptualisation of

63

these. But we will not go into that question any further. Observations on mental
models bring Norman to the conclusion that "most people' s understanding of the dev
ices they interact with is surprisingly meager, imprecisely specified, and full of
inconsistencies, gaps, and ideosyncratic quirks". People in the field of cognitive
ergonomics will arrive at similar conclusions either looking back at their own com
puting history or observing their subjects.

1.2. Individual differences

There is much variation in the nature and the adequacy of the mental models that
guide the behaviour or computer users. Among the possible sources of variation the
level of experience has obtained most attention from researchers. Much of this
research draws upon well known studies regarding differences between novices and
experts in solving chess problems or science problems (e.g. McKeithen, 1981). The
general conclusion is that experts do not only know more of computing, but that
their knowledge is also better organised and (by consequence) more easily accessi
ble. Other authors (e.g. Kahney, 1983) established however that the level of
experience is certainly not the only source of variation in the organisation and
amount of computing knowledge. Individual differences have shown to be due to
several other factors such as personality traits and dimensions of cognitive style.
In one of our earlier experiments we found that the acquisition of computing con
cepts, such as conditional branching, is significantly effected by learning styles
as indicated by Pask's serialism-holism dimension (van der Veer and van de Wolde,
1983). We intent to explore the role of several other dimensions of personality and
cognitive style that look promising for the prediction of phenomena of human com
puter interaction (van Muylwijk, van der Veer and Waern, 1983). One of these vari
ables bas been included in the pilotstudy reported here (impulsivity-reflexivity).

1.3. Metaphors

An important means of establishing adequate mental models of computers and computing
in novices is the use of metaphors. Metaphors are very powerful in activating
existing schemata that may help to grasp critical features of computing systems.
They may offer a shortcut to prevent teachers from digressing on computer architec
ture. Peelle (1983) describes different categories of metaphors and related
approaches to be used in education about computers. Lawson (1982) presents ela
borate examples of some metaphors, intended fora first introduction to computer
systems, which have been the basis for the analogies used in our study.

2. A PILOTSTUDY

Tne first opportunity to try out our approach was in of an existing introductory
course on statistical computing at the Department of Social Sciences at the Vrije
Universiteit in Amsterdam. The format and the content of the existing course had to
be kept intact, but the teacher was very cooperative in providing opportunities to
make observations and to administer special measurement devices, and in discussing
his teaching strat'egy with the investigators before the course took place. In fact
this is a condition to be able to construct the relevant questionnaires about the
changing models of the system we are inter~sted in, and which are dependent upon the
actual structure of the course.

As stated in 1.2. an important source of variation is the domain of individual
differences between novice students. There are two aspects that we would like to
consider, The first one deals with the experience of the student with computation
and with computer systems, and his beliefs and attitudes in t~is field. The way the
values of these variables are established will be treated in 2.1.2. The second
aspect concerns the more stable modes of cognitive functioning t,at are expected to

64

be relevant to the population of students concerned: the domain of cognitive styles.
In the present study, however, we were obliged to restrict ourselves to one variable
in this field, that could be measured in a relatively short amount of time, and in
fact we used one that was intended to pr~vide the students with an actual database
to practise with during the course. This domain is therefore only partly covered.
The results were not expected to be very impressive, but the inclusion of at least
one cognitive style dimension would suffice to illustrate the method we propose.

2.1. Method

2.1.1. Subjects

24 Uni·versity s tudents, mainly from the Department of Social Sciences, enrolled for
a course introducing computational statistica. None of them had any knowledge of
the computer system to be taught, all had a background in applied statistics. All
had been at the university for at least four years. The students were told the aim
of the study at the start of the project, and had the freedom to refrain from parti
cipation. Although no one refrained from participation in the study as a whole, a
few students did not take part in some of the tests during the course. All students
chose their own identification number from a list, and were anonymous to the inves
tigators, to the teacher and to their fellow students.

2.1.2. Measurements prior to the course

(a) computer literacy
TI1e experience, attitudes and beliefs of our students in the domain of computer
use are measured with a translated and abridged version of the Minnesota Com
puter Literacy and Awareness Assessment (Anderson et al., 1979). The question
naire takes a maximum of 25 minutes. The resulting scores are:
- CASTkp, procedural knowledge;
- CASTkc, conceptual knowledge;
- CASTam, attitude towards mathematics;
- CASTas, attitude towards science;
- CASTx, amount of experience with computers;
- CASTed, amount of education about computers.
The scoring we used is an adaptation by the authors. Only CASTkp and CASTkc are
part of the original scoring method. The other indexes resemble scores that
Anderson used in experimental studies only. We used an abridged version of the
test, that in one of our other studies showed a correlation of .91 with the com
plete version, fora sample of subjects comparable the subjects reported on
here.

(b) cognitive style
As mentioned in 2., there was no opportunity to invest a lot of time in measur
ing cognitive styles. The test we included as an example is the IRT, an experi
mental version of an impulsivity-reflexivity speed test, developed at the Vrije
Universiteit of Amsterdam. The test resembles the MFFT by Kagan (Kagan et al.,
1964). The items are designed to enable a scoring method aimed at measuring the
speed-accuracy trade off, unrelated to cognitive capacity. The test takes a
maximum of 20 minutes. The test results in two relevant scores:
- IRTe, number of errors;
- IRTt, total solution time.
In our sample the correlation between these two indexes was negative, as
predicted (-.54). The first index however turned out to be very unreliable,
whereas the second one had a split half reliability coefficient of .93
(corrected for test length: .96). For our analysis we will therefore only use
IRTt.

65

2.1.3. Physical arrangement of the course

TI1e course took place in a special classroom where the students were seated in pairs
behind 12 terminals connected to the central university computer system, a confi
guration with two Control Data Cyber 170-750 mainframe systems. The course lasted
two weeks, about 6 hours a day. Class introductory lectures and explanation of how
the computer worked were alternated with short periods of individual experimentation
and practise. During 2 hours a day periods of free exploration and hands on experi
ence were possible, on which occasion two assistants were present for additional
help. In the central lectures the teacher made use of a blackboard, an overhead
projector and a terminal connected to the computer system, with the display image
projected on a large screen.

2.1.4. Contents of the course, design of the field study

Since the principal method of our study is the observation of phenomena and tae
measurement of change within the models during the course, a description of the
method cannot be given without dealing with the details of the course.

(a) The first week was devoted to learning how the system works (the batch system
NOS-be en the interactive system INTERCOM), including facilities like editing
and text processing, sorting and file manipulation. The didactic method was
centered around a series of metaphors that were deviced in order to facilitate
the development of valid models of aspects of the system:
- conversation with the system was compared to conversing with a slave in a res

tricted language, referring toa knowledge base upon which the partners agree;
- operating the computer was compared to operating a dish washer in a restau

rant;
- queue and stack operations were illustrated with the metaphors queueing for a

bus and shunting operations;
- file manipulations were treated analogous to the functions of a video

recorder;
- for the handling of masterfiles a library was the metaphor;
- sorting procedures were first introduced by presenting a problem about a slave

who is to put a list of numbered units in their correct order, and who is too
stupid to find a nandy way of doing so;

- for the editor and text processor the slave was again the analogy, being a
faithful servant who needed short and exact commands.

For some of these metaphors (the dish washer, video recorder file manipula
tion, the sorting slave, the editing slave) we collected systematic observa
tions: Before the analogy was introduced, we administered a questionnaire about
the model of the "naive" user (see figure 1 to 4).

66

Design a kitchen machine for a restaurant, with the functions:
a. washing up,
b. drying.

Both processes will have a restricted capacity, e.g. 60 dishes (a) and
20 dishes (b), and last a certain amount of time, e.g. 10 and 5
minutes. The restaurant owner possesses a limited number of dishes, so
he will have to wash up at regular times.

Which options for choice have to be built in:
before process a ••••••••••••••••.••..•••••••••.••
between a and b .••••••••••••••••••.•.••••••••.••
after process b ••••••••••••••••.•••.••.••••••••.

Which decisions are better left to the staff?

Whicn questions will the machine have to ask the operator regarding re
quirements (e.g. detergents) ?

Figure 1 Question asked before introduction of the concept "auto
maton''.

If you were designing a video-apparatus, which buttons would you include
- think of the possibilities needed to spool to another scene, to copy
parts of a tape for assembling etc.

knob function description

Figure 2 Question asked before introduction of file manipulation
procedures.

Write instructions fora slave to arrange the following group of numbers
in ascending order:

3,12,-2,11,10,10,-18,0,l,0,25

Formulate the commands in such a way that they may be applied to other
groups of numbers.

Figure 3 Question asked before introduction of sorting.

67

Write instructions for a slave to correct t...~e indicated errors in t,.~e
following poem. Use short commands but take care to be very precise.

LimericifAnonymo~
of ;:yde) There was a young lady

~o ate some green_:)
(apples L d1.ed

th;;../fermented f
~ and mad cider

\.insjde the lamented

Figure 4 Question asked before introduction of the editor.

r r;;
7w
L ~nd

_j ai fries
/i

After the completion of each questionnaire the forms were collected and the
instructor posed the same question in the group and collected the responses on
the blackboard. With this list he started his elaboration of the model, point
ing out the correspondence with computer system operations and the dissimilari
ties. The diversity of reactions resulted 1.n a rich metaphor, with of course a
nu.~ber of useless associations that had to be discarded. This metaphor was fre
quently used during the rest of the course to assist in the explanation of a
number of system functions, and to answer questions that arose during the next
practise period. Mainly the semantic aspects of the actual system commands and
facilities were treated. The syntax was only briefly mentioned, documentation
was distributed and the students were advised to gain experience using the sys
tem itself.
At the end of the week a post test was administered to measure the newly
developed model of the system on the same topics. For the sorting process and
the editing and text processing systems the questions were nearly identical to
the ones asked before the treatment. The other questions are displayed in fig
ure 5 and 6.

Explain toa fellow student who missed the lesson concerned how to place
a job that is prepared in the .editor, in the input queue,

explain the next thing that will happen to this job,

explain when and how one knows that the output can be collect,

explain how this may be arranged.

Figure 5 Question about the computer system, asked after tne
first week.

69

Suppose you have at your disposal an arithmetician who knows about sta
tistical calculations. He does not knowhow your data are structured.
Write down a short and precise description of the way in which he can
find the right numbers in your table in order to make the calculations.

Scores have been collected from 300 cases concerning the variables age
(A), length (L), weight (W) and sex (S), recorded in a table with column
headings A, L, Wand S and rows 1 to 300. Scores are noted in years,
centimetres, kilograms and 1 (wamen)/ 2 (man). If a score is missing a
dash (-) is written.

1
2
3

300

A

43
26

56

L

164
172
168

173

w

84
58

s
2
2
1

2
>--------------

Instruct your arithmetician to calculate the product-moment correlation
coefficient between length and age.

Instruct him to draw a frequency distribution of weights.

Have the scores for weight changed into codes 1 (weight less than 60 ki
logram), 2 (weight between 60 and 70 kg.) and 3 (weight over 70 Kg.).

Figure 7 Fragment of questionnaire about statistical computing
procedures, administered prior to SPSS course.

Since all students had finished courses in theoretical statistics and courses in
methodological topics, we might expect them to be able to provide these instruc
tions for their slave arithmetician. We computed a score (STATpr) of correct
ness, consisting of the accumulation of indexes which indicated a mentioning of
the procedures to be executed, the variables to be used, the number of cases to
be processed, the identification and handling of missing data.
The SPSS course started with an introduction about a research project (actually
about the IRT administered at the beginning of the first week). A number of
methodological and applied statistical questions were raised in a group discus
sion. The teacher made sure that some of the questions that "spontaneously"
arose could only be stated precisely after other problems were solved. The list
of questions on which the group agreed was used as a guideline for determining
the type of exercises needed to practice werking with those SPSS elements
covered in the course. Each element was taught in the group with using a black
board, and afterwards reviewed via fragments of a video course deviced by Cooper
(1982). Here again the syntax was only briefly mentioned. Students had to work
through the manual and gain experience using the system. At the end of the
second week we computed a score for the procedural model of the SPSS package
(STATaf). The measurement device consisted of the same items as STATpr.

70

2.2. Results

2.2.1. Observations

During the course a lot of observations were made. We will restrict ourselves to
examples of some interesting phenomena, concerning general behaviour of the stu
dents, problems of working with the special kind of metaphors and problems due to
lacking knowledge of statistics. We will thereafter give one example of the intro
duction of a metaphor.

(a) Study behaviour
A number of students made a habit of not following one of the teacher's instruc
tions, namely that they were to write down the precise text of the system com
mands and to work out the parameters fora few exercises using the documenta
tion. They preferred to attempt to use the fragmentary knowledge they had at
that moment in a trial and error way on the system, and did not attend the
introductory discussion on the initial problems.
Nearly all students had a lot of problems with the folklore of the (very user
unfriendly) system; the login procedure for instance is a continuous source of
errors.
Amore general problem is the convention to end a message to the system by
pressing the return key . The students kept forgetting this and repeatedly were
observed waiting fora reaction of the (admittedly slow) system when the system
was doing the same. For these students (and for every onlooker) their intention
was fully clear.

(b) Working with metaphors
The first introduction to metaphors and especially the introduction of a slave
to be given precise instructions met with some misunderstanding, in that the
students were not used to formulating their commands in an algorithmic way. The
sorting exercise resulted in a variety of imprecise and internal inconsistent
solutions. Tne teacher needed a lot of time giving extensive exam~les to clear
up this problem.

(c) Knowledge of statistics
We discovered that for some students concepts in statistics that had been taught
a few years ago were lost. They had forgotten about the distinction between
different correlation coefficients, or were indeed not surprised when they
obtained a complete correlation matrix filled with ones (1).

(d) Introduction of a metaphor - an example
The idea of a library was used as an analogy for the file handling sys tem. The
teacher started with the introduction of the concept referring to general
experience: Books are stored according to the alphabetic order of the name of
the authors. In his metaphor he made it clear that, in this analogy, there is
one unique author for each book. The students were asked to mention the kind of
manipulations that should be made possible and which facilities should be
installed. The group of student produced a list of functions that were written
on the blackboard:
- locate a book,
- borrow a book,
- return a book,
- insert a new book,
- remove a book,
- list all books (to which the teacher added: e.g. alphabetically or according
to the date of acquisition).
There were more suggestions, e.g. "read" or "copy", but the teacher argued that
these actions need only be performed after a book has been borrowed. Since in
that case the book is already no langer in the library's files this actions were
left out of the metaphor.
The teacher naw argued that the same kind of actions may be performed on files
(analogue to books): these may be located, taken out, added, removed, put back
(after something has been changed to the file different from books in a
library) and listed. A "library" of files in this system is called a master
file.

71

Fora precise description of the semantics and syntax the students were referred
to the user manual. They were presented some exercises designed to let them
find out the most common instances of file handling, looking up the commands in
the manual, writing down their trial solutions, trying them out on the terminal
and discussing the errors in the group,
Later in the course, when some problems arose about the concepts file and
masterfile, the teacher reminded the students of the difference: "Your master
file is your library, The files are the books, and books you may read". This
immediately solved the problem.
In the second week the concept systemfile was introduced, which is
concept in SPSS. In that case the metaphor is no langer valid.
lacked an adequate metaphor, and we think he did not succeed in
problems in the available time.

a central
The teacher

solving all

2.2.2. description of the variables

(a)

(b)

(c)

(d)

computer literacy and awareness
TI1e first variables we took into consideration were these we described in 2.1.2.
(a): In average the subjects had a background of less than one day of computer
experience (CASTx) and less than one day of computer education (CASTed).
Because of this the sub jee ts can be rated "novices" in our opinion.
cognitive style
The dimension we used as an example for
showed a nearly "normal" distribution:
var iat ion, the re were no "outliers" nor
metaphors

this domain, impulsivity-reflexivity,
the scores showed a reasonable symmetrie
did we detect any hint to bi-modality.

The variables we used in our analysis were derived from the questionnaires
illustrated in 2.1.4. For each measure we developed some absolute scoring cri
terion (e.g. for the video-apparatus metaphor: the number of correct functions
mentioned as compared to a canonical list, subtracted by the number of
irrelevant or redundant functions), The data were scored separately by two dif
ferent judges, in order to establish the reliability of the scoring method, The
reliability coefficients turned out to be in between .89 and .96 (for the video
metaphor) for the different variables, which was satisfactory for out purposes
(with one exception, the dish washer: .80, which points to scorings rules that
are insufficiently precise). For the pre-test questionnaires the scores showed
a pronounced central tendency, and a symmetrical distribution. At the post-test
the computer model (introduced with the metaphor of the dish wasner) showed a
clear bi-modal distribution: some students had a clear and consistent image of
the system whereas ethers did not show even a fragmentary relevant model. For
the questions concerning the editing job all subjects scored conspicuously low
in the post-test, The notoriously bad quality of the system that had to be used
in this respect surely is the cause for this phenomenon. The sorting problems
and the questions about file manipulation (analogous to the video metaphor)
showed a nearly "normal" score distribution at the post-test.
Statistical computing
These variables are already described in section 2.1.4 (b). The correlation
between pre-test and post-test were not significant. We found a considerable,
statistically significant difference between the scores on tl1e two (nearly
identical) tests. A clear improvement in the semantic aspects of statistical
computing may be concluded.

2.2.3. Relations between the variables

In this section we only deal with these variables that might contribute toa better
understanding of the model of the system in the minds of the subjects. The relation
we expected to find between the metaphor variables and their pendants we measured
after tne course was completed, was not apparent: we didn't find any significant
statistical relation between the variables.

72

2.3. Interpretation

We assumed that having amore or less adequate mental model, measured via a metaphor
that was going to be used during the course itself, would facilitate the learning of
the complex material presented in the course. There are two possible explanations
for the absence of any relation:

(a) In retrospect we note the content of the pre-test, the metaphors, was of a
rather semantic nature, whereas the post-test asked for the syntactic structure
of the system commands. We are in fact measuring conceptual notions that are
located at two different levels in Moran's representation of the human computer
interface (Moran, 1981).

(b) The course itself was of such a quality and was taught so well that every sub-
ject mastered the concepts and models of the system totally.

To check for explanation (b) we took a second look at the results of the post-tests
regarding the models of the system. Tuis learned us that we could discard possibil
ity (b). The notorious user unfriendliness of this system did confuse the subjects
so much that they couldn't perform any better. So, fora possible explanation of
the absence of relations we assume chat explanation (a) is feasible. This means
that pre-test and post-test are incompatible as they are oriented towards different
levels of human computer communication. In replications of this study one should
avoid such a confusion.

Another relation not confirmed in our data was between cognLtLve style (operational
ised in our test on impulsivity/reflexivity), and the introduction of novices toa
computer system. A possible explanation is that this measure will only show effects
in very short courses (e.g. one day). When subjects are able to practise during
several days, the effect of being impulsive or reflexive can readily disappear.

We didn't find a relation between computer awareness and pre/post-tests on mental
models. Tuis might be explained by the fact that computer awareness is measured at
such a basic level that after having followed a course like the one described here,
all individual differences have disappeared.

3. EVALUATION OF THE l1ETH.OD

Although the results in this pilot study are negative in terms of the hypothetical
relations we investigated, the positive effect is the illustration of a method to
evaluate relations between novices' characteristics, strategy of the course and the
resulting mental model of a system. The possibility is demonstrated to establish the
relation between these variables in a non experimental situation, as will be found
in normal computer education. The results of research in this domain will have to
be accumulated by many replications of this kind of studies, with variation in the
three groups of variables we mentioned. "Negative" re sul ts as wel 1 as "posi tive"
ones help to reveil the complex relation in this field.

REFERENCES

Anderson, R.E., Hansen, T.P., Johnson, D.C.,
puter Literacy and Awareness Assessment.

Klassen, D.L. (1979). Minnesota Com
Minnesota Educational Computing Consor-

tium, St. Paul.
Cooper, M.F. (1982). lntroducing SPSS (7 video

cises). NUMAC, University of Newcastle upon
tapes, course notes
Tyne.

and SPSS exer-

73

Eason, K. (1983). Metnodological issues in the study of human factors in teleinfor
matic systems. Behaviour and Information Technology, 2, 357-364.

Kagan, J., Rosman, B.L., Day, D., Albert, J., Phillips, W. (1964). Information pro
cessing in the child: Significance of analytic and reflective attitudes. Psycho
logical Monographs, 78.

Kahney, H. (1983). Problem solving by novice programmers. The Psychology of Computer
Use. T.R.G. Green, S.J. Payne, G.C. van der Veer (eds). Academie Press, London.

Lawson, H.W. (1982). Understanding Computer Systems. Computer Science Press,
Rockvill, MD.

McKeithen, K.B., Reitman, J.S., Rueter, H.H. and Hirtle, S.C. (1981). Knowledge
Organization and Skill Differences in Computer Programmers. Cognitive Psychology,
13, 307-325.

Moran, T.P. (1981). The Command Language Grammer: a representation for the user
interface of interactive computer systems. International Journal of Man-Machine
Studies, 15, 3-50.

van Muylwijk, B., van der Veer, G.C. and Waern, Y. (1983). On the implications of
user variability in open systems - An overview of the little we know and of the
lot we have to find out. Behaviour and Information Technology, 2, 313-326.

Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, K., Bent, D.H. (1975). Statisti
cal Package for the Social Sciences. Mc.Graw-Hill, New York.

Norman, D.A. (1983). Some observations on mental models. Mental Models. D. Gentner,
A. Stevens (eds). Lawrence Erlbaum, Hillsdale.

Peelle, H.A. (1983). Computer Metaphors: Approaches to computer literacy for educa
tors. Computers and Education, 7, 91-99.

van der Veer, G.C. and van de Wolde, G.J.E. (1983). Individual differences and
aspects of control flow notation. TI1e Psychology of Computer Use. T.R.G. Green.
S.J. Payne, G.C. van der Veer (eds). Academie Press, London.

COGNITIVE ASPECTS

HUMAN COGNITION AND HUMAfl COMPUTER INTERACTION

Werner Schneider, Mats Lind, Robert Allard, Bengt Sandblad

Uypsala University
Sweden

Not too long ago the programmer and the program user were one and the same person.
Since the user had created the program he knew what to expect from it, what it could
and couldn't do, now to control and change it etc. The diffusion of computers in our
society and their usage in an ever increasing number of professional fields has
changed this picture. In most cases the user is no longer the person who has written
the program in question. Tuis separation causes a considerable number of problems
concerning the cognitive ergonomics of human computer interaction. It is the pur
pose of this paper to define some of these important problems and to indicate a way
of sol ving these· problems. Other important aspects of human computer interac tion
such as physical and social factors will not be considered.

1. THE COMPUTER AS A PARTNER INA CONVERSATION.

The problems a user faces when confronted with a new computer program very much
resemble the problems a person faces when confronted with another, unknown, person.
There are certain things "in the head" of the other person ideas, .i.ntentions,
knowledge etc. that cannot be directly perceived, and must therefore be induced
through communication with that person. Similarly, when confronted with a new pro
gram, a user cannot know what is inside the computer, "behind the VDU screen",
because invariably it looks the same as every other system he knows. The way in
which the program works and the possibilities it offers have to be induced from com
municating with the program and from additional information sources such as manuals,
previous users etc. The similarity of these two situations have led to attempts to
add a "natural language interface" to programs, since person to person communication
is often successfully achieved through natural language. Much of the research con
cerning natural languages and their implementation in computer programmes has dealt
with intralinguistic problems such as syntax, semantics, word ambiguity and so on.
We would like to indicate a few components of person to person communication that
are of equal importance, thus warranting consideration in the present context. Tneir
importance is so great that even if the intralinguistic problems were solved, a
better l:ICI (Human Computer Interface) could not be expected.

Although it is true that human beings are unique they also share a set of proper
ties. Some of these properties play a great role in human communication. It is not
our intention to try to make an exhaustive list of these or to structure what person
to person communication really is, but instead to point out a few important aspects
that have a direct bearing on human computer interaction.

To begin with, human beings have a very elaborate perceptual system wit..~ an enormous
capability. The computational power needed in the real-time processing of a complete
three dimensional representation of the environment in full colour is, to say the
least, impressive. These perceptual capabilities underlie at least three aspects of
communication:

77

(a) Since both participating partners can perceive the surrounding environment,
language can easily and without loss of information (probably rather a gain)
refer to things or events for which the participants in the communication do not
have clear concepts or words. For instance, "Look what is happening over the re,
I would like to be able to do that", or "Give me one of these, please".

(b) Communication can be totally unambiguous altnough there is an intralanguage
ambiguity. "Watch out for the mustang" is perfectly clear on a freeway and in a
corral, although the information transferred is quite different (Fitter, 1979).
Tnis also means that communication can be short and powerful since not so many
explanations (= resolutions of ambiguity) have to be given.

(c) There is a whole system of communication not using words but intonation, body
posture, gestures etc.

On top of these perceptual capabilities human beings also share another important
property human beings are adaptive. This means that we can adapt to each ethers
way of thinking and reacting to enhance communication. Just think of the number of
instructions a new apprentice needs in an unfamiliar work site and compare this to
the number of instructions he would need after having worked there fora long time.

Seen in this light the computer capacities needed for the efficient use of persen to
persen communication as a model for human computer interaction are far greater than
natural language interfaces can offer. It is therefore our firm belief that we ought
to look in another direction in the coming years to overcome the problems encoun
tered in human computer interaction.

2. A DIFFERENT APPROACH TO HCI CONSTRUCTION

Up to this point we have been concerned with these human abilities which computers
do not possess. The power of computers is however of another nature. The opportunity
to do number crunching and to control visual display devices is something which only
computers can offer, and which has increased the number of ways in which problems
can be solved: We are no longer restricted to modelling persen to persen communica
tion. The problems previously discussed are caused by the fact that the computer
programs are no longer only used by these who have written them. The normal situa
tion is now such that people are confronted with new programs without knowing how to
run them, what they can do, how the processes can be controlled and so on. Instead
of seeing the program as a "black box" that can only be accessed through a language
interface, a solution would be to present the program in such a way that tne user
can make a werking model of it as easily as possible. Before describing the way in
which this can be achieved we will briefly discuss what we consider to be the nature
of mental models and their information.

2.1. Tne nature of mental models

Rasmussen (1980) gives an excellent account of what we know of human cognitive func
tioning and dis tinguishes between a "high capacity, parallel processing sys tem which
functions subconsciously, and a sequential conscious processor of limited capacity"
(p. 72). What we would like to suggest is that the two systems are dependent of one
another. The high capacity, parallel processing system is the basic one which allows
us to move and orient ourselves in our environment. It is therefore primarily con
cerned with constructing and using models of our environment based on spatie- tem
poral relationships. The operators and parameters of these models formed by the high
capacity, parallel processing system, we suggest, are the basic entities of the low
capacity sequential system. This would mean that if the high capacity parallel pro
cessing system has not been allowed to develop a relevant model of a specific
environment, the low capacity, sequential system cannot function in a relevant way.

If the entities with which the low capacity, sequential system works are derived

78

from the dynamic world model suggested above, the construction of HCI's will be
greatly influenced: every part of a program that can be represented as a "time space
pattern" (Rasmussen) in the HCI, will be represented as such. This is true for every
type of program, even for programs in which control in terms of high level concepts
is required, not for the purpose of con trol; but to enable the user to form a
correct opinion of ~hat these higher order concepts actually refer to. If this is
not done, the user will only be able to understand the program to the extent that
his already existing world models can forma basis for the understanding of the cou
cepts used in the HCI.

Tne goal in the construction of HCI's is therefore to represent as much of the pro
gram and its functioning as possible as time space patterns.

The term "time space patterns" needs further specification. Since our memorJ for
spatial relations is extremely efficient we can retrieve both objects and informa
tion on the mere basis of their physical location: every concept which is
represented in the HCI as a spatial pattern must also have a physical location, i.e.
a spatial relation to every other defined pattern. This seems to be one of the most
important features in the formation of mental dynamic world models - being able to
keep track of things, not by their name, hut by their physical location.

3. IMPLICATIONS FOR THE CONSTRUCTION OF HCI'S

The representation of the program should be such that it minimises the effort needed
by the user to forma correct model of the program. A program can be considered to
be a collection of OPERATORS that can act on a set of DATA.

Ata specific instance of time the configuration of data can be called a STATE.

Considering the nature of mental models we can conclude that both tne states and the
operators should, to whichever extent possible, be represented in such a way that
they are perceivable. Since our primary source of information about spatial rela
tionship is v1s1on this means that states and operators should be represented by
position, colour, form etc. This does not mean that verbal labels should be aban
doned totally, on the contrary, they supply useful complementary information in much
the same way as a text accompanying a picture can highlight certain aspects and lead
to a quicker and better interpretation of new visual information. Indeed some of
the most common computer applications involve words as the basic data type, in which
case the representation of the states is naturally in terms of patterns of words.
The operators do not, however, nave to be of a verbal nature.

3.1 States

The level of detail of the representation of the states is determined by both the
set of goals a user can nave when interacting with the program and by tne set of
operators available.

Since adults have a tendency to perceptually group visually presented information
according to the so called Gestalt principles (similarity, proximity, good continua
tion etc.) information that is logically connected should be represented in such a
way that it is also perceptually connected. -

Tiiis grouping should be done taking more than one dimension into account because of
the increasing ease of discrimination caused by the presence of redundant informa
tion. Examples of such aspects are place, form and colour. Care must be taken to
make contradictory grouping impossible.

If tne data are of verbal nature and the task of the operator is to read and

79

evaluate such material all the information needed in an evaluation should be
presented simultaneously because of the limited performance of the human memory in
tasks involving coded material.

If these data are to form the basis of a searching process for certain,
designer unknown, pieces of information, there must be a possibility to
large amounts of data simultaneously for the same reason as above.

3.2. Operators

to the
display

The greatest difficulty in forming mental models of a program possibly does not
reside in grasping the data involved and their interpretation, but to know and to
uuderstand the set of operators available and the way in which they work. This pro
cess can be said to have four components, discriminating/grouping the operators,
remembering this, grasping their effect on the data and remembering this. From
memory research we know that humans have been shown to have a remarkable memory
capacity during recognition tasks, but have had less remarkable results in recall
tasks. This together with our discussion above about the spatial nature of memory
and also of the spatial grouping tendencies implies:

The representations should always be presented at the same pnysical location, i.e.
to allow the user to forma spatial representation of the place where the operators
are to be found. Tne representations of the operators should be grouped with respect
to more than one aspect according to the principles outlined for the data above.

The form of these representations should be related to their function.

3.3. Relation to other attempts

Some of the steps that have been taken in the direction of constructing a HCI which
concretely represents the programs, such as LISA by Apple and STAR by Xerox, do not
fulfill many of the important requirements mentioned above. For example, the spatial
relations between the operators are often undefined, the structuring of the
representation is not always done according to the principles described here etc.
The use of a small screen in this kind of rlCI also necessarily implies that sequen
tial restrictions are imposed on the user prohibiting efficient use of the pro
grammes.

4. REALITY

Our everyday environment usually fulfills all the requirements stated above (unless
we have a computer of course). These environments have toa large extent been con
structed by man, but the materials used, and the hundreds of years of evaluation and
invention, have made them easy to work with.

An ordinary office for instance, resembles the environment in whicn an
economic/administrative program is used on a computer in many ways. The way in which
the task of information retrieval is performed can be based on the principles of
recogn1.t1.on, spatial position and perceptual grouping. Paper itself takes up a cer
tain amount of space. Bookshelves are filled with paper (spatial positions) that is
usually grouped in some way or another ("accounting on the top shelf" or specially
coloured markers). To find a specific piece of information you only have to remember
a very approximate location (nota specific name or code), to look in that direction
and to let your enormous capacity for visual scanning and recognition work and soon
you will have found what you were looking for. Please note how such a process can
be disturbed (not completely disabled) by several factors. First, if the papers were
continuously reshuffled by some other person spatial location as retrieval

80

information could not be used any more, Second, if the papers concerning a specific
topic were spread all over the office in different sized files or volumes it would
also be harder because grouping ("chunking") could not be done. Not to speak of the
situation which would arise if you did not have any access to your office at all but
instead had to ask for all the information you wanted with only a serial number,

Same of the operators available to you are abstract and can only be remembered by
recall, others do have a concrete representation in terms of tools such as scissors,
adhesive tape, stapler etc. All of these representations have a place, form and
colour, Hence you can find them in the same way as has been described above, On top
of that their shape is a good indicator of their function.

5. CONCLUSIONS

In this paper we have tried to indicate some of tne enormous difficulties involved
in trying to simulate a human being in order to construct a computer program which
is easy to use, even for beginners, We nave also tried to describe a very different
approach, in which tne computer tries to simulate these iiilportant aspects of the
environment which our sensory, motor and intellectual abilities have been snaped to
handle.

A number of implementations and experiments have been started according to these
guidelines and we will present some of tne results at the conference.

REFERENCES

Fitter, M.(1979). Towards more "natural" interactive systems. International Journal
of Man-Machine Studies, 11, 339-350.

Rasmussen, J. (1980). The human as a systems component. Human Interaction with Com
puters. Smith, H,T. & Green, T.R.G. (Eds.). Academie Press, London.

UNDERSTANDING COMPLEX DESCRIPTIONS

Collin Potts

Department of Computing
Imperial College of Science and Technology, London

UK.

User-system interaction is starting to receive the attention it deserves. A picture
is starting to emerge from work in cognitive ergonomics of the requirements for user
interfaces, for example for text editors (Card et al., 1983), command languages
(Barnard et al., 1981) and programming language syntax (Green, 1980). Ina short
sketch of the research opportunities that exist, Shneiderman (1982) lists several
similar issues, such as menu selection, on-line assistance, etc. He also draws
attention to issues such as overcoming anxiety and fear of computer usage. I shall
not comment on such social and organisational issues, but I want to sugges t that
attention to ergonomie issues of the first type neglects a range of important human
factors in system use. These operate at a conceptual level beneath the external
(e.g. graphical or pretty-printed) characteristics of the interface. The problem I
want to address relates to these. It is this: how can an information system be
designed so that the complex descriptions it supports and which are manipulated by
the users can be rendered into forma that are harmonious with the users' mental
models?

In the first part of the paper I shall discuss a conceptual architecture for infor
mation systems which emphasises the understandability of the descriptions they
embody. The architecture consists of an internal description which may be manifested
by applying two classes of transformation, forming separate conceptual and external
interfaces. In connection with the conceptual interface, I discuss the relevance of
current work in cognitive science, especially text linguistics. I shall ignore the
external interface, as this has received the most attention in the cognitive
ergonomics literature.

In the second part of the paper, I shall concentrate on a class of complex descrip
tions of particular relevance to software engineering, specifications. A specifica
tion is usually thought of as a text and a specification language as a language. A
specification, however, is simply a description of a reality that does not exist yet
and a programming support environment is, amongst other things, an information sys
tem for manipulating such descriptions. Thus in addition to the effects of syntactic
and physical factors (e.g. layout) on the . understandability of specification, we
should also be examining the conceptual models required of the specifier by dif
ferent specification language.

1. INFORMATION AND DESCRIPTIONS

Much of our interaction with computers consists of manipulating complex descrip
tions, and the understandability of information systems should be seen in this
light. To understand such a system one must understand what is being described and
how the description describes it. In other words, the user must understand the
domain of discourse itself (but not necessarily all of it in detail, and possibly
with on-line help from the information system), and the information system must
present the description it contains, and the parts of that description that should

82

be brought to bear on the solution of application problems, in away that is con
sonant with that understanding.

1.1. Views and the canonical formalism

Because a system usually caters fora variety of categories of user, its description
of the real world must be capable of being manifested in a variety of ways. In addi
tion to this s tatic diversi ty of viewi1oints, a user may wear a range of different
organisational 'hats', and may use the system on different occasions to fulfil func
tional or organisational roles.

Tnis notion of 'views' is familiar from the database world. One way
views is to maintain separate descriptions with rules effecting ~~e
between them (Figure la). Tuis approach has several disadvantages:

(a) it is space inefficient (and inelegant);
(b) it is statie;
Cc) the descriptions ·are bound to become inconsistent eventually.

of supporting
transformation

An alternative is to select one of the descriptions and adopt the formalism or data
model in which it is expressed as canonical. Better still, a canonical formalism
can be devised which is separate from any of the conceptual views, but which has
desirable formal properties, and the users' views can all be derived from it (Figure
lb). Thus a description expressed in the canonical formalism may be quite unpalat
able as an external view, but need never be inspected or manipulated by anyone in
this form.

Tuis two-level model requires furtaer enaancement. It has no distinction between the
steps which reorganise and simplify the description in the canonical formalism, and
those wnich take the resulting conceptual description and present it in different
external formats (e.g. by listing tables, or drawing graphs). Toe complete archi
tecture is depicted in Figure 2.

The internal description is mediated through two interfaces, the conceptual inter
face, producing a conceptual description, and the external interface, producing phy
sical output. The process of generating output from the internal description is
called manifestation and the inverse process, of encoding descriptions is called
formulation

The advantage of separating conceptual and external levels, is that the external
interface comprises what is usually called the 'user interface'. Wasserman (1981)
and Edmonds (1981) demonstrate that this can be detached from the functionality of
the system and implemented separately. This is not possible at the conceptual level,
which is intertwined with the function of the system and the description of reality
that it embodies.

83

(a) Views as autonomous descriptions (b) Views as manifestations of an
internal description in a
canonical formalism

Internal
Description

Figure 1 Alternative methods of representing multiple views

defäH'~~Ï~ns
(Phvsical · · ·
outpu~J

Manifestation

Formulation Interface

Internal Description

Figure 2 Conceptual architecture for information systems

1,2. Manifestation

Extracting specific information from the internal descript ion, particularly

84

information that would be represented differently in different views, in rather like
summarising the gist of a passage. Van Dijk (1978) has suggested that summarising
natural language depends on a set of 'macro-operations', which transform the propo
sitional content of the text into a propositional structure at a higher level, or
'macro-structure'. Domain-specific knowledge structures determine when macro
operations are appropriate.

Good psychological evidence has been obtained that summarisation and memory for
prose depends upon; a local propositional representation, a small working memory,
and the construction of a macro-structure from macro-operations. For example,
Kintsch and Van Dijk (1978) and Vipond (1980) obtained a close fit between subjects'
recall of passages and the simulated recalls based upon the model. Spilich et al.,
(19 79) inves tigated the knowledge s truc tures re qui red to bring about iaacro
operations during comprehension of baseball commentaries by baseball fans and stu
dents with little knowledge of the game. Using an analytic goal structure for base
ball, they showed that fans had better recall because they were more discerning
about the importance of information in the commentary.

To make complex descriptions easier to understand, therefore, it seems natural to
structure the process of conceptual manifestation around operations resembling
macro-operations. The steps I shall describe are similar to Van Dijk's. These are:
re-formulation, filtering, generalisation and integration.

(a) Re-formulation of a description is equivalence-preserving. That is no informa
tion is lost or added, the existing description is merely re-organised so that
constructs which were implicit, or 'spread' out, in the original description are
brought into focus, Consider a 'produces' and 'consumes' database where agents
(they might be warehouses, chemical plants or factories) produce and consume
things (which might be widgets, chemicals or data flows). An agent-based
description of the form:

a produces D
b consumes D
b produces E
c consumes E

could be re-formulated so that the focus is on the things being produced and
consumed:

D goes from a tob
E goes from b to c

(b) Filtering deletes information which is not important to the current view, or
which can be assumed by the user. Most simple database queries (e.g. "where do
all the widgets go?") ar-e filters. 'Views' in existing relational databases con
sist of statie filters (or 'blinkers'), so that each user can see only part of
the database, his or her schema being a sub-schema of the whole. Current data
base systems do not support views derived by operations other than filtering.

(c) Generalisation implies the need for partial ordering of types (e.g. a class
hierarchy with strict property inheritance), For example, the query "which peo
ple are working on this project?" may involve a generalisation from 'senior con
sultants', 'programmers' and 'documentation assistants' to the superordinate
class 'people'. Note that in the view in question, there may be no distinction
between people: the user may not be aware that generalisation is necessary.
A special case of generalisation which is very important in interaction with
information systems, but less so in summarising prose, is quantification. Quan
tifying the number of penurious academies who earn more than me involves an
implicit generalisation from penurious academies A, Band C to the general class
of 'penurious academies'.

(d) Integration is a more sophisticated form of summarisation. Domain-specific
knowledge is represented in the form of attributes and associations particular
to objects of a given class. Additional relations, such as time-ordering of

85

actions, may be represented as cues for causality. To use Van Dijk's (1978)
example, the following facts:

I bought wood, stones and concrete
I laid foundations
I erected walls
I made a roof

can be integrated as:

I built a house

1.3. Knowledge structures

The above examples of conceptual manifestation steps are simple. Most real examples
would consist of the composition of many such steps. The selection of the operation
and their sequencing (composition is not, in general, commutative) requires inter
cession by knowledge structures of the kinds indicated in Figure 3.

The data dictionary is a meta-level description of the canonical formalism. It
defines the data model that is instantiated by the internal description. In current
implementations it would consist of the physical and conceptual schemas, a conven
tional data dictionary and a set of integrity checking procedures.

It is likely that the set of conceptual manifestation operations (CMO) would be sup
plemented by a set of composed operation 'packages'. The simplest user model would
then be a definition of valid views for each user category. These views would be
mapped onto the appropriate packages in CMO.

A domain model must specify a type lattice for objects within the domain of
discourse. Tuis is used primarily for generalisation operations. Attributes and
associations particular toa type should also be represented. Two approaches to

.domain m'odelling are discussed by MacLean et al. (1983) and by Bartlett et al.
(1984).

User

Model

Conceptual

Manifestation

Operations
Description

Conceptual

Descrip tions

Figure 3 Knowledge sources for conceptual manifestation

Data

Dictionary

Domain

Model

86

2. UNDERSTANDING SPECIFICATIONS

A specification is a description of a world that has not been realised yet. For
example, a software developer's specification of program function is a description
of the behaviour of an imaginary program. The extra element of futurism, or inten
tion, does not alter things as far as we are concerned; specifications are just a
special kind of description, and the understandability of specifications depends on
precisely the same categories of factors and macro-operations as the understandabil
ity of other descriptions.

First of all, what is a specification? The dichotomy between specification and pro
gram is an oversimplification. As Lehman et al. (1983) have shown, the software
development process can be seen as the repeated application of transformations
between representations. Each representation is a 'specification' with respect to
the ones following. Indeed, if you were a compiler you would regard the program
itself as a specification. I shall refer to all such representations of the final
product, including the program text itself, as 'specifications', but I shall res
trict most of my attention to specifications earlier than the program, which are
more declarative.

2.1. Specifications as texts

Specifications must be understood by people, as well as being amenable to formal
manipulations. Many 'specification languages' have been proposed -- see Staunstrup
(1982) for an introduction -- but little attention has been paid to the understanda
bility of specifications written in such languages, and the trade-off between rigour
of specifications and the wider acceptability and usability of formalisms for
expressing specifications has yet to receive much attention.

Let us first examine the notion of a programming 'language' and then look at specif
ications. Programmers spend a great deal of time poring over program listings. When
most people think of programs they think of texts printed on green and white striped
paper with sprocket holes down the side. We now have work stations with bit-mapped
displays and mice (well, some of us do), but this should not disguise the fundamen
tally textual nature of existing programming languages. Indeed, with the current
trend for high-resolution iconography of such familiar everyday objects as litter
bins and filing cabinets, it is surely only a question of time before someone mark
ets a text editor that supplies on-line stripes and simulated sprocket holes for us.

Some programming language features exist only because of the linear nature of pro
gram texts. For example, the insistence on data declaration before use is taken to
extremes in languages such as Ada. Notice that the idea of a sequentia! scan, and
therefore the linearity of language, is built into the notion of a compiler 'pass'.
Now, there are strong prima facie reasons for keeping the linear notion of program
ming languages. Amongst other things, a program is a specification of a temporal
ordering of computational events. Tuis ordering need not be represented explicitly
(e.g. in temporal logic or transition networks) because it can be derived from the
text. But as one moves further back through the programming process the concepts
expressed become less temporal and procedural, and more statie and declarative. Yet
there is a common attitude that specifications are in some sense 'like' programs and
that as programming becomes an increasingly formalised engineering profession that
its professionals (usually called 'analysts' in this context) will spend a great
deal of their time poring over listings in much the same way as programmers do
today. The only difference will be that the languages in which the texts will be
expressed will be specification languages, rather than programming languages.

In fact, the word 'language' is used in two senses; as a means of communication
(that is a carrier of descriptions), and as a formal system in which the adjacency
and sequentia! ordering of symbols carries special information. The second sense
implies linearity.

87

2,2. Specifications as descriptions

An alternative view of specifications is that they are descriptive models. Tuis is
an especially fruitful view of earlier specifications; one would seldom query a da
tabase or a S,Jecification by asking the question "tell me everything you contain",
but this is precisely what a listing is, Similarly, one would not elevate to the
status of a 'specification language' a database input or query language, although
the specification language PSL (Teichroew and Hershey, 1977) is little more.

Of course, large programs are breken down into components, soit is not quite
to say that one must list an entire program in one go, But there is only one
phology of a program, its modular structure and this is directly reflected in
linear appearance of program texts. Tuis makes it difficult to list aspects of
program which cut across this particular structuring, for example when one wants
know where a given variable is used (rather than where it is declared), or how
control flow of the program can getto a certain point (rather than where it can
next),

true
mor

the
the
to

the
go

In the case of specifications, this need for multiple views is much greater. If a
specification is seen as a description, rather than as a text, it can be modularised
non-linearly and dynamically,

We are back to the distinction drawn in the context of infonnation systems, between
the internal description in the canonical formalism and its conceptual manifesta
tions: thus a distinction must be drawn between the unique specification in a canon
ical formalism, and the set of transient external manifestations derived from it.
Only some of these need be 'linguistic' in a conventional sense; ethers may be
gràphical, tabular, or even animated.

Next we shall look at a concrete example of a canonical
usability considerations affect the formulation of
internal level, Linguistic manifestations will then
animated manifestations.

2.3. Prolog as a canonical formalism for specifications

formalism, Prolog, and how
a specification even at the

be discussed, and finally

We have been basing a canonical structure for specifications on Prolog (MacLean et
al., 1983). Prolog is very suitable as a formal representation medium for specifica
tions because it has a formal basis in the Horn clause representation of first-order
predicate logic (Kowalski, 1979) and much current research is attempting to extend
logic programming to other (e.g. temporal) logies. The granularity of a Prolog
specification is typically very high, consisting of a large number of uniformly
small facts and rules, Tuis makes it suitable as a canonical formalism for specifi
cations. Prolog is a programming language and thus is directly executable. It can
also be regarded as a database tool with an inference mechanism; indeed, there is no
formal distinction between running a Prolog program, and querying a Prolog database.
Prolog can take Prolog clauses as its object,and this permits metalevel rules (e.g.
for consistency checking and for conceptual manifestation) to be expressed cogently.

Prolog, however, has several undesirable features w~at make it an unpleasant tool
for communication at the external level. For example, there is no explicit typing of
objects, which we have seen is the basis of generalisation. The granularity of the
information in rules and facts is frequently far too high, so that a Prolog specifi
cation is modular in only a very weak sense.

We have examined the potential of Prolog for supporting the specification of systems
using the CORE requirement analysis method (Mullery, 1979). In order to impose some
discipline on the processes of information acquisition from the client, representa
tion of CORE-specific abstractions, and writing manifestation rules, we devised a
canonical formalism which consisted of Prolog plus some 'keywords', that is CORE
specific predicates (M~cLean et al., 1983).

88

The likely use of the information does influence how that information should be
represented in the canonical formalism. For example, in the case of a simple lift
system the developer may wish to know the number of buttons that call the lift to
travel upwards. The following formulations in Prolog are equivalent:

number_of(up_button, X) if

number_of(up_button, X) if

number of(middle floor,
number=of(bottom=floor,
X is Y+Z.

Y) &

Z) &

number of(floor, Y) &

number=of(top_floor, Z) &
X is Y-Z.

The second formulation is preferable because it is a qualification of the natural,
but incorrect, assumption that there is an up button on every floor. Of course, 'Z'
could be replaced by the constant 'l' in both formulations, but this 'optimisation'
would obscure, not clarify, the relation between the cardinalities. This becomes
important if an expert system explanation tool such as APES (Hammond 1982) is pro
vided to walk the specifier t.':trough a complex chain of inferences.

2.4. Conceptual interface for specifications

The conceptual manifestation operations were introduced in Section 1.2, above. I
shall now examine how they can be made useful in the context of specifications.

2.4.1. Re-formulation

An exciting area for future research is devising re-formulation rules which map a
highly granular logic-based internal description into a structured object-based
description based on formalisms such ad DL (Winograd 1983). For example, consider
the Prolog and DL descriptions in Figure 4 taken from an i~aginary specification for
a university admissions system. Ignore the external layout of the descriptions, and
notice instead that the DL description is focussed on the object 'course'. The prob
lem with object-based languages like DL as specification languages is that only one
view is possible (why, for example, should 'takes course' be associated with
'course' rather than 'student'?) But if an object-based description is derived
dynamically from an internal description, alternative views can be maintained
without redundancy.

2.4.2. Filtering

Filtering is clearly a major requirement for understanding specifications. The sim
plest form is filtering by gross modularisatian (e.g. by listing a single procedure
from a large program), but this is inflexible. Fischer and Schneider (1984) have
developed tools that allow Lisp programmers to make program fragments invisible in
the displayed manifestation of the code. The fragments are frames and their roles
(e.g. a function's callers, documented purpose and code), and a filter is defined by
controlling the visibility of each of the roles.

89

(a) Object-based DL description (after Winograd 1983).

course
roles:

students: SET OF student
maximwn enrolment: integer
enrolment (COMPUTED): integer {SIZE OF students}

predicates:
a course is full if
- ~olment = maximum enrolment
~ student is taking ~ course if

student MEMBER OF students
categories:

level: {elementary, advanced}

(b) Logic-based description with typing:

valid students(x:course, y:students) if students(x,
valid-maximum enrolment(x:course y: integer) if

maximum enrolment(x, y).
valid enrolment(x: course, y: integer) if

enrolment(x, y).
enrolment(x: course, y: integer) if

students(x, z: students) &

y).

SIZE OF (z, y) •
full(x: course) if maximum enrolment(x, y:integer) &

enrolment(x, y).
take course(x: student, y: course) if

-students(y, z: students) &
MEMBER OF(x, z).

valid category(course, level, elementary).
valid=category(course, level, advanced).

Figure 4 Illustration of re-formulation: Logic-based internal
description and object-based manifestation

2.4.3. Generalisation and particularisation

Generalisation, and its inverse particularisation, are important in specifications
where types can inherit properties from supertypes. In the above example, a course
may be elementary or advanced. The specifier must be able to inspect the properties
of elementary and advanced courses (they are the same as those of 'course' in this
simple example) even though they are not described explicitly, but must be inferred
through particularisation operations.

During the course of specifying a system, the specifier may wish to quantify
instances on the basis of generalisation. For instance, the number of buttons
required in a lift system (nota simple question - think of a lift system you know
well) should be inferred from the numbers of various sorts of buttons (the ones on
each floor, the ones in each lift, etc.)

2.4.4. Integration

Perhaps the clearest need for integration operations is not for specifications them
selves, but in summarising traces from running programs, or scenarios used to exer
cise specifications. An example of a simple event grammar for summarLSLng traces
from distributed systems is given by Bates and Wileden (1982), in which events can

90

be composed into 'macro-events' by regular expressions.

2.5. Validation of specifications.

The examples of manifestation given above are all statie, and
been derived from text linguistic work. There is another way
standing ·of a specification which is very different. Tuis is
tion.

the categories have
of developing an under
validation by execu-

Validation answers the question whether the current specification represents what
the client wants and really needs (MacLean et al., 1984). Inspection of a suitable
statie manifestation of . the specification may suffice. In addition to looking at
diagrams or formatted texts, statie inspection may include theorem proving.
Nevertheless, computer systems are unique among engineering and information
artifacts in the primacy of their behaviour. To specify a system, one specifies what
it does. Thus to validate specification one needs to be able to generate a model of
therystem's behaviour. To achieve an understanding of the complex behavioural
consequences of a specification it is often necessary to convey the flavour of using
(or being) the system and walking through its behaviour directly.

The current interest in rapid prototyping stems from the need to validate specifica
tions by direct observation of behaviour. Rapid prototypes however suffer from
several inadequacies: they are derived informally so the accuracy of their portrayal
of behaviour is not guaranteed; there is no formal means of feeding back conclusions
about the behaviour of the prototype to the specification; and it is tempting to
encourage the clients (who may not be end-users) to 'play' with the prototype,
rat,1er than experiment carefully (indeed, a prototyping effort can easily become a
public relations exercise).

Within the framework described in this paper, my colleagues and I have experimented
with two animation techniques for specifications which are more rigorous than rapid
prototyping. In one, a specification of a geochemical computer-aided learning system
(Potts et al., 1983) was encoded in Prolog. Tuis could be animated using suitable
support tools. In the other, simulation models (Bartlett et al., 1984) were gen
erated from JSD specifications (Jackson, 1983).

3. UNFINISHED BUSINESS

While preliminary work has been accomplished in supporting conceptual manifestations
of a specification, including executable models, separate from its canonical formal
ism, further work is required in the following areas.

(a) How should domain-specific knowledge, used in generalisation and integration, be
represented?

(b) How can views, which depend on conceptual manifestation steps other than filter
ing, be defined?

(c) How can categories of users best be categorised in terms of the views they
require?

(d) Given that the canonical formalism is likely to be unpalatable to people, how
should formulation take place?

ACKNOWLEDGEMENTS

Tuis research was supported by the Advanced Research Projects Agency of the Depart
ment of Defense and the Rome Air Development Center (RADC) and was monitored by the

91

Air Force Office of Scientific Research under contract No. F49620-82-C-0098.

Most of the ideas described in this paper have arisen from
Lehman, Andy Bartlett, Brian Cherrie and Roy MacLean.
recognise, metamorphosed, some of our database wish-list.

REFERENCES

discuss ions wi th Manny
Matthey Morgenstern will

Barnard, P., Hammond, N., Morton, J., Long, J., Clark I. (1981). Consistency and
compatibility in human-computer dialogue, Int. Journal Man-Machine Studies 15,
87-134.

Bartlett, A.J., Cherrie, B.H., MacLean R.I., Potts C. (1984). The derivation of Ada
executable validation models from JSD representations. Imperial College of Sci
ence and Technology, Dept. Computing, Research Report Doe 84/3.

Bates, P.C., Wileden J.C. (1982). EDL; a basis for distributed system debugging
tools' Proc. 15th Hawaii Int. Conf. Sys. Sci. Software, Hardware Decision Support
Systems, Special Topics. Vol. I.

Card, S.K., Moran T.P., Newell A. (1983). The Psychology of Human-Computer Interac
tion. Erlbaum.

Edmonds, E.A. (1981). Adaptive man-computer interfaces. Computing Skills and the
User Interface. Coombs, M.J., Alty J.L. (Eds.). Academie,

Fischer, G., Schneider, M. (1984) Knowledge-based communication processes in
software engineering. Proc. 7th Int. Conf. Software Eng., IEEE Press.

Green, T,R.G. (1980) Programming as a cognitive act1.v1.ty. Human Interaction with
Computers. Smith H.T., Green T.R.G. (Eds.). Academie.

Hammond, P. (1982). APES (A Pro log Expert System Shell); a detailed description.
Imperial College, Dept. Computing Research Report Doe 82/10.

Jackson, M.A. (1983). System Development. Prentice-Hall.
Kintsch, W., Van Dijk, T.A. (1978). Toward a model of text comprehension and produc

tion. Psychol. Rev. 85, 363-394.
Kowalski, R. (1979). Logic for Problem Solving. North Holland,
Lehman, M.M., Stenning, V., Turski W.M. (1983). Another look at software design

methodology. Imperial College, Dept. Computing Research Report Doe 83/13.
MacLean, R.I., Potts, C., Cherrie, B.H., Bartlett, A.J. (1983). The MINEX Model and

its Language. Imperial College, Dept. Computing, EMMA Technical Report TR3
(available from the author).

MacLean, R.I., Potts, C., Bartlett, A.J., Cherrie B,H. (1984). Validation in the
software process. Proc. Software Process Workshop, Egham, IEEE Press.

Mullery, G. (1979). CORE; a method for controlled requirement expression. Proc. 4th
Int. Conf. Software Eng., IEEE Press.

Potts, C.,MacLean, R.I., Bartlett, A.J. (1983). Modelling the domain of discourse as
a precursor to requirements analysis. Imperial College of Science and Technology,
Dept. Computing, Research Report Doe 83/16.

Shneiderman, B. (1982). Human factors of interactive software, Enduser Systems and
their Human Factors, Blaser, A., Zoeppritz, M, (Eds.). Springer-Verlag.

Spilich, G.J., Vesonder, G.T., Chiesi, H.L., Voss, J.F. (1979). Text processing of
domain-related information for individuals with high and low domain knowledge.
Journal Verbal Learning and Verbal Behaviour, 18, 275-290.

Staunstrup, J. (Ed.), (1981). Program Specification. Springer-Verlag.
Teichroew, D., Hershey, E.A. (1977). PSL/PSA; A computer-aided technique for struc

tured documentation and analysis of information systems. IEEE Trans. Software
Engineering SE-J; 41-48.

Van Dijk, T.A. (1978). Text and Context: Explorations in the semantics and pragmat
ics of discourse. Longmans.

Vipond, D. (1980). Micro- and macro-processes in text comprehension. Journal of Ver
bal Learning and Verbal Behaviour, 19, 276-296.

Wasserman, A.I. (1981). Software tools in the User Software Engineering Environment.
Tutorial: Software Development Environments. Wasserman A.I. (Ed.). IEEE Press.

Winograd, T. (1983). Language as a Cognitive Process. Vol. 1. Syntax'. Addison
Wesley.

DO WE REALLY HAVE CONDITIOtj_AL STATEMENTS IN OUR
BRAINS?

Jean-Michel Hoc

Laboratoire de Psychologie du Travail de l'EPHE (ERA CNRS), Paris
France

1. INTRODUCTION

Programs which beginners are asked to write, more often than not, correspond to
tasks that can be executed by hand. TI,e programming strategy usually employed is one
in which a well-known procedure is adapted to adhere to the rules of operation of
the formal machine under lying the programming language being used (Hoc, l 98Ja).

However, it is not enough to simply adapt a procedure, it must be explicited as
well. This requires an awareness of the control structure, in other words, data
identification operations and transfers of control. This paper will examine the
nature of the control structures on which this awareness is based, and not the com
plex mechanisms involved in becoming aware (Piaget, 1974a, b).

In procedural programming language control is expressed by means of tests. It has
been shown however (Miller, 1981), that beginners find it difficul t to construct
tnose test statements in conditional structures or at the ends of iterations.
Several research papers have been devoted to this question and in particular to the
facilitating effects of different languages (Sime et al., 1977; Green, 1980; ~an der
Veer and Van de Wolde, 1983). But it is possible to go even further and to examine
the effect of such tests in control structures of procedures which seem to be algo
cithmic and which are executed by nand. If not, this would explain one of the rea
sons for the difficulties experienced by beginners. Tuis hypothesis can be con
sidered in the light of two current areas of research in psychology:

(a) Research on attention (Richard, 1980) which has nighlignted the importance of
s tates of preparation (expec tation phenomena) linked, in particular, to fre
quency and recency effects;

(b) Research on typicality (Cordier & Dubois, 1981) which exploits the delay in
decision-making in class-sorting problems in order to show that, in the
subject's representations, tnere are typical (short delay) and atypical (long
delay) examples which are not necessarily linked to frequency effects.

If such effects exist, it can be expected that certain identifications will be omit
ted during the execution of the procedure, eitner:

(a) because the subject adapts to the frequency of events or he is sensitive to the
recency effect or,

(b) because the data being processed are represented semantically in the long-term
memory, implying typicality effects.

This experiment mainly examines the second phenomenon by comparing the control
s truc tures during ti,e execution of procedures in two different si tuations. In the
first, the subjects rely on a strongly semantic representation of the data and in

93

the second, on a much more abstract representation. In both situations, the data to
be processed have the same "objective" structure. In the "semantic" situation we
anticipate that the subjects will not be able to deal with certain identifications
which could have been made in the "abstract" situation in which exhausti11e search is
possible.

Tne subjects are placed in a command situation in front of an interactive computer
device. The data transformations are controlled by function keys so that the contro1
structures can be identified by response latencies. The different representations
are achie11ed by modifying certain characteristics of the device which affect neither
the data structure nor the commands available but only the way in which the data can
be accessed.

2. METHOD

2.1. Subjects and Task type

Twenty adults with no particular computer skill took part in the ex,>eri.ment. They
were first presented with a task comparable to the task (of using a keyboard and
screen device) they would have to do in the real test situation. It concerned the
updating of a stock (fig. 1).

OLD STOCK (Al TRANSACT 1 cx,;s (N) NEW STOCK <Nl

number qu&nt1ty number quant1ty number quant1ty

jJ
10 4 -18

7
1 19

I& ó -16 2 20
12 6 90 3 45
26 7 50

7 Il 8 -20
0 & 3(J

8 1:5
88 0

ENTER AI EA ENTER N I EM OUTPUT A I SA

1

COMPUTER

MEMORY A MEMORY M

number- quant1ty numb•r qu&n t I ty

..j 4 35 1 1 3 1 -18 1

~·
✓

AD

Figure 1 Task of reference

The subjects had at their disposal: the stock position the evening before (Old Stock
file: AS) and the following day' s transactions (Transaction file: MVT). Tne items

94

were listed according to their classification numbers - lowest first. The subjects
had to construct a new file (New Stock, NS) similar to the file Old Stock (AS) but
including the quantities actually in stock after the day's transactions. The sub
jects were then shown how to use the transformations common to the two experimental
devices. T11ey nad to learn how to use the keyboard display, the sys tem presenting
data files and the processor, together known as a "computer".

The computer contains two memories, each containing one item from one of the
corres;>onding files (memory A for the file AS and memory M for the file MVT). Tne
subject gives the computer commands using one of 4 keys, each key corresponding toa
possible transformation:

- EA: to enter the first item of the file AS in memory A (this item
is thus cleared from the file);

- EM: Same operation between file MVT and memory M;
- AD: to add the contents of memory M to that in memory A (clearance

of memory M) and the total appears in A;
- SA: to write the contents of memory A in the file NS (clearance of

memory A);

T11e result of each transformation appears on the screen. The subject is shown how to
proceed before taking ;>art in the actual experiment:

-item without transaction: EA - SA
-item with one transaction: EA - EM
-item with "n" transactions: EA -[EM

where [••. Jn indicates n times [••• j

- AD - SA
AD]n - SA

Finally, each subject is assigned at random to one of the two experimental devices
described below.

2.2. Experimental devices

2,2.1. Device compatible with a strong semantic representation of the data

Tne subject, using the commands described above (EA, EM, AD, SA), only has access to
the immediate states of memories A and M. After each operation EA (entrj of an item)
and AD (addition of a transaction), however, memory M provides him with information
about tne nature of the following tr.msaction (first line of the file MVT):

(a) if the word MVT appears (ex: "6 18 MVT") it means that the item which is
currently being processed (ex: Item ó in memory A) will be involved in the next
transaction. The subject must therefore type the command sequence EM - AD until
further information is supplied.

(b) if, 11owever, the word MVT does not appear, the processing of this item has been
completed and the system is waiting for the next item to be processed, The sub
ject inserts the commands sequence SA - EA and again further information is sup
plied (ex: "9 11 " wnich means here that there is no transaction for item 9).

The correct procedure can therefore be illustrated by the following rules:

IF
Rl: ;>resence of indication MVT
R2: absence of indication MVT

THEN EXECUTE
---'>~ EM - AD
---->~ SA - EA

Tuis device is compatible with a semantic representation of data in terms of tran
sactions nested in items. The following goal stack is the result:

95

Goal Stack: Procedure:

File AS updating
item updating
transaction processing

[EA-lEM-AD]n-SA]P
EA-[EM-ADJn-SA

EM-AD

2.2.2. Device incompatible with a strong semantic representation of the data

Tuis device is identical to the previous one except there is not indication MVT. The
experiment is therefore exactly the same as before, but the item nwnber in memory M
is masked if it is different to that in memory A. Toe subject having just processed
the transaction of one item and having entered a transaction concerniug another
item, without this masking, may have calculated tne number of intermediary items
without transactions. This would have been impossible with the compatible device.
The subject could process the masking (after EA or EM) in the following way:

(a) if the transaction nwnber in memory 11 is legal (ex: "6 18 6 -16") it means it is
the same as the item number being currently processed (in memory A): the subject
can therefore use the command sequence AD - EM until further information is sup
plied by the following indication.

(b) if however, the number in memory l1 is illegal ("6 92 XXX 50") it means a dif
ferent item is being processed and that the command sequence SA - EA will lead
to further information.

The correct procedure can be written by a system of rules analogous to the rules
previously mentioned with just one inversion, namely of the sequence EM - AD to AD -
EM:

IF
Rl: unmasked
R2: masked

>
>

THEN EXECUTE
AD - EM
SA - EA

The inversion of the sequence EM - AD makes no difference to those items without
transaction. They will still be processed by the sequence EA - SA. This inversion
does however affect the items with transactions as these are now processed by a
sequence EA (AD - EM]n - SA. The device is now incompatible with the previous
6oal stack. The subject can only identify the final transactiot1 of an item by
entering a transaction whicn is foreign to this item. Tt1e processing sequence of
this transaction is thus interrupted: [EM - [SA - ••. -EA] -ADJ. The nesti,1g of the
earlier goal stack no 1onger corresponds toa complete nesting by this procedure.
At various moments the subJect has to change to a higher level goal (item) wnilst
already seeking a lower level goal (transaction) without naving accomplished it.

The subject is forced to change his semantic representation into a more successful
abstract representation in which the data are structured as a list of pairs (content
of memory A, content of memory M). From now on he employs simple rules of passage
from one pair to another without having to consider the nature of the obJects being
processed (items, transactions).

The objective being to study control structures used in executing procedures, the
elaboration of these procedures is deliberately accelerated by telling the subject
(using either the compatible or the incompatible device) the correct procedure in
terms of a semantic representation of the data.

2.3. Design

The subjects (factor
to a device type
types of transitions

S) are divided into two groups of 10 - each group corresponding
(factor DJ. During the execution of a procedure, eight possible
(factor T) between commands are defined (Figure 2). Each

96

procedure being represented by a two rule system, a distinction is made between:
inter-rule transitions (tl to t4) which correspond to identifications and intra-rule
transitions (t5 to t8) which are simple links between commands, The response latency
is measured for each correct transition,

(l6

~
) l2, MVTM

RI MVT---EM(ouAD) AD(ouEM)
---~

l 5
ll,MVTM

l 3:MVT 1

EA

l4:MVTI

Figure 2 Transition types for the two devices. Meaning of the
transitions:
tl: transition at the end of processing an item with

tranl1ction : there is no other transaction: MVTM:
SA-----=..:......A ,

t2: transition to the following transaction: therg is
another transaction (MVTM) : EM (or AD) t AD
(or EM).

t3: transition to processing an item with transaction:
there

5
is a first transaction (MVTl): EM (or

AD)-t--AD (or EM),
t4: transition to processing an item without

8
transac

tion: there is no transaction MVTl: SA ~A

The data to be processed are divided into eight successive blocks. The frequency
with which each of the four types of inter-rule transition appear is equally bal
anced. There are 80 transitions for each block which means that each subject exe
cutes 640 (8 x 80) transitions. The factor "Block" has been introduced to examine
the effects of a potential modification of the control structure on time. The data
have been analysed by analysis of variance followed by "fiducial inference" using
the design formula:

97

(subjects nested in devices and crossed with transitions which are themselves
crossed with bleeks). (For fiducial inference and notation of design formula, see
Rouanet et al., 1976; Hoc, 1983b, c) .

3. RESULTS

In order to define the control structure employed in each black and to evaluate the
inter-individual variability within each group of subjects the individual protocols
were analysed. As the variability proved to be very small, analysis per group for
each device was completed, the results of which are presented here.

3.1. Compatible device (semantic representation)

1.60

1.50

1.40

1-30

1.20

1.10

1.00

0.90

0-60

0.70

060

o.so

0.30

11-
12 ~-----o
13-t<: ., _____ •

15---
16-------
17-·- ·- ·-
18---··- - -

...
--.---------~-

---=~~-:---- . ___ _. __ .., _____ _

b1 b2 b3 b4 bS b6 b7

Figure 3 Response latencies for the compatible device (dl):
abscissa: successive bleeks,
ordinate: mean latency in seconds.
Evolution of the latencies of the eight types of tran
sition over all the bleeks.

b8 Block•

Figure 3 shows the evolution of the response latencies corresponding to each transi
tion type for all the bleeks. We would like to point out , that independent of the

98

block, all eight transition types show the same response latencies pattern.
Response latencies for the intra-rule transitions (links) are the shortest and have
the smallest variance. For the response latencies of the inter-rule transitions
(identifications: see also figure 2):

(a) with a guarantee of .98 it is inferred that the response latencies for t3 are
shorter by at least 160 ,sec. (22% of the latency observed for t3) to those for
t4, over all the blocks. Therefore, after EA the subject is prepared to process
an item with transaction.

(b) with the same guarantee of .98 it is inferred that the response latencies for t2
are at least 140 msec. (21% of t2) shorter than those of tl, over all the
blocks. Therefore after AD the subject is prepared to process another transac
tion.

In addition, we note that if the latencies corresponding to preparation phases (t2
and t3) are similar to those for the intra-rule links (tS to t8), then the data are
compatible with the hypothesis that those conditions, which correspond to the states
of preparation, are not explicitly identified by the subject.

TI1e frequency of errors is revealing in this respect: a prepared trans1.t1.on (t2 or
t3) is more often triggered off in error (11.3% and 27.5% respectively) than an un
prepared transition (tl : 2,5%; t4 : 0%).

3.2. Incompatible device (abstract representation)

1.60

1.50

1.40

1.30

"l'.20

1.H'

1.00

'490

aao

Q.70

Q,60

o.so
0,40

Q.30

,, __
12 • ---•
13--

'"•---IS--
16 ----·
17---·
18 ----

b1- b2 b3 bS b6 b7

Figure 4 Response latencies for the incompatible device (d2)
(see suo-title of figure 3)

b8

99

Figure 4 is analogous to figure 3 for the incompatible device. Tl1e preparations
observed for the compatible device have now almost entirely disappeared:

(a) response latencies for t3 and t4 are very similar to each other over all the
blocks. Absolute value of the difference is smaller than 80 msec. (8% of t3 and
t4) with a guarantee of .95.

(b) the same can be said for tl and t2 for the blocks bl to b4, and b7: the absolute
value of the difference is smaller than 130 msec. (14% of tl and t2) with a
guarantee of .90. Nothing can be concluded for the other blocks which implies
that abstract representation is not always stable. Error frequencies are small
and similar to each other when there is no preparation.

The data are compatible with the hypothesis that the subject now explicitly identi
fies all the conditions.

4. DISCUSSION

The existence of different preparation states leads to a distinction between two
types of identification to be found in the control structure of the procedure exe
cuted by each subject:

(a) Specific Identifications:
They are based on well defined conditions of validity and occur at precise
moments in the execution.

(b) Identifications of Invalidity:
They are more diffuse and capable of halting the execution at any time to return
the control to the specific identifications.

The procedures employed by the subjects can be modelised as systems of rules in
which the component "condition" only brings out the specific identifications (Hoc,
1982). The model for the observed procedure with the compatible device would there
fore be of the followin~ type (transition numbers are the same as in figure 2):

t4 t8 t3 tS t2 t6
no initial transaction • SA-EA -EM -AD -[EM - AD)n
no following transaction• SA-EA -EM -AD -[EM - AD)n
tl t 7 t3 tS t2 t6

We note that t2 and t3, which correspond to the two preparation states, are pro
cessed as simple links which are only interrupted when invalidity (considered a
"demon") is identified. As these identifications of invalidity are diffuse, it may
happen that they don't operate correctly and so don't prevent the release of inap
propriate actions. Tuis results in mistakes such as these examined above.

Tuis procedure does not include conditionals, such as those known
all the identifications do not by way of specific identifications
rules) such as was the case for the incompatible device.

in informaties:
(left side of the

What now remains to be considered is the difference in the control structure between
a situation in which the semantic representation of the data can be retained and one
in which the subject has to adopt amore abstract representation.

In the first case (semantic representation), there is double preparation: for an
item with transaction and for the presence of another transaction. Two reasons can
be put forward to explain this preparation for an item with a possibility of tran
saction:

100

(a) a phenomenon of typicality - this property is more typical in an updating task
(b) amore satisfactory nesting of the transactions in the items. (items without

transaction are not considered).

On the other hand the preparation for another transaction concerns the absence of
specific identifications of the condition for continuing the iteration (that of ?ro
cessing the transactions).

It should be noted that the semantic features of the data to
transactions) create effects which are extremely resistant
tion. Tuis could have lead for example to the removal of the
the later blocks.

be processed (items,
to any tempora! adapta
preparation states for

In the second case (abstract representation), it is precisely this tempora! adapta
tion which works with the incompatible device. As a result of adopting an abstract
representation of the data in the form of a list of ?airs, with rules for passing
from one pair to another, the phenomena observed in the previous situation disap
pear:

(a) the lack of typicality and of a nesting form of representation take away the
necessity for the preparation of a particular item.

(b) this same lack of nesting removes the iteration on the transaction and, by that,
the absence of any explicit identification of a stopping condition.

5. CONCLUSION

Although this experiment has only a limited significance, we feel that it highlights
the need for a deeper study of the control structures used in carrying out pro
cedures so that the mechanisms of bécoming aware can be better understood. The con
struction of a computer program is never done from a tabula rasa - the subject
always knows some parts of the procedure and, using the mechanisms of becoming
aware, he will try to express them in the programming language.

Tuis experiment certainly shows that the equivalent of computer tes'ts can be found
in the control structure of a procedure carried out by a subject. But at the price
of an abstraction which it is not always possible to achieve. Programming problems
convey semantic representations which are not easily made abstract. These phenomena
can be used to understand beginners' difficulties, the effects of typicality are,
for example, the source of certain programming errors even for experienced subjects,
e.g. authors of programming manuals, as it has been shown by Lesuisse (1983).

It has also been noted that even when a procedure seems algorithmic, the subject
will work according toa heuristic which ensures a certain economy of identification
by treating the procedure sequentially. This can be seen in some of the results
obtained by Miller (1981) in his studies on programming in natura! language.

The question to be asked is whether it is fruitful to construct programming
languages which use "natura!" control structures. On one hand these "natura!"
structures are not always reliable but on the other it is probably impossible to be
aware of certain components of these structures. If the presence of diffuse identif
ications of invalidity is a viable hypothesis, they are doubtless outside our realm
of awareness.

In order to answer these questions and to improve our definition of the basic con
structions of our own control structures, further research is necessary. The tools
introduced by artificial intelligence could be very useful in this type of analysis.

101

FOOTNOTES

1
2.) This research was supported by the "Agence de l'Informatique"

) The meaning of this forlllulation is the following: Without any other informdtion
than the one provided by the two samples, an uncertainty distrioution on the set
of possible values for the difference between the two population means can be
defined. From this distribution, the following statement (fiducial conclusion)
can be derived: "the probability that the population mean latency for t3 is
shorter by at least 160 msec. to the popu1ation mean latency for t4 is • 98";

* * p*(µ4- µ3>160msec.) =.98. To evaluate its importance the difference (160 msec)

is related here to the latency observed for t3: 22%.

REFERENCES

Cordier, F.,Dubois, D. (1981). Typicalitè et reprèsentation cognitive. Cahiers de
Psychologie Cognitive, 1, 299-J33.

Green, T.R.G. (1980). Ifs and thens: is nesting just for the birds? Software Prac
tice and Experience, n. 10.

Green, T.R.G. ,Payne, S.J., Van der Veer, G.C. (1983). The psychology of computer
use. Academie Press, London.

Hoc J.M. (1982) Reprèsentation des donnèes et structure de contrê1e d'un processus
de traitement. Caniers de Psychologie Cognitive, 2, Jd9-419.

Hoc J .M. (1983a). Analysis of beginner' s problem-solving strategies in programming.
In Green et al.,

Hoc J.M. (1983b). Evaluation of different modalities of verbalisation in a sorting
task. International Journal of Man-Machine Studies, 18, 293-306.

Hoc J.M. (1983c). L'analyse planifièe des donnèes en psychologie. PUF, Paris.
Lesuisse, R. (1983). Analyse des raisonnements faits et des erreurs commises dans

des programmes publiès de recherche dichotomique. Le Travail Humain, 46, 2.39-254.
Miller L.A. (1981). Natural language programming: styles, strategies, and contrasts.

Perspectives in Computing, 1, 22-33.
Piaget, J. (1974a). La prise de conscience. PUF, Paris.
Piaget, J. (1974b). Rèussir et comprendre, PUF, Paris.
Richard, J.F. (1980). L'attention, PUF, Paris.
Rouanet, H., Lèpine, D., Pelnard-Considère, J. (1976). Bayes-fiducial procedures as

practical substitutes for misplaced significance testing: an application to edu
cational data. Advances in psychological and educational measurements. D.~.M. de
Gruiter, L.J.T. van der Kamp, H.F. Crombag (eds). Wiley, New York.

Sime M.E., Arblaster, A.T., Green, T.R.G. (1977). Reducing programming errors in
nested conditionals by prescribing a writing procedure. International Journal of
Man-Machine Studies, 9, 119-126.

Van der Veer G.C., Van de Wolde, G.J.E. (1983). Individual differences and aspects
of control flow notations. In Green et al.

COGNITIVE ERGONOMIC RESEARCH AT SAPU, SHEFFIELD

MRC/ESRC
T.R.G. Green 1 Social and Applied Psychology Unit

University of Sheffield
Sheffield SlO 2TN

U.K.

Tuis is a report on recent research by myself and my colleagues, Max Sime, Stephen
Payne and David Gi lmore. \'/here I say "we" and "our" it re fers to all of us. I hope
I have not misinterpreted their ideas too much.

Previous research at this Unit into the causes of difficulty in comprehending pro
grams led us to the conclusion that it is useful to regard programs in the same
light as other forms of presentation of complex information, and to ask how easy is
it to extract necessary information from them. Tuis view point emphasises the role
of structure: the program structure must be easily perceived, and it must make it
easy to perform the user's task given the usual human abilities and disabilities.
Structure must be well-specified, visible, and appropriate.

In the first section of this paper I shall briefly outline the course of our work on
program comprehension, in order to establish our views on structure. The following
sections describe recent research at this Unit into the causes of difficulty in
learning and using text editors. We believe that the notations of cornrnand languages
and of prograrnrning languages need to satisfy very similar requirements as regards
visible and appropriate structure. The final section offers some conclusions,
necessarily tentative.

1. COMPREHENDING SMALL PROGRAMS: POOR NOTATION CAUSES PROBLEMS

The early prograrnrning work at this Unit is often linked with the use of the 'Hungry
Hare', a simple card-sorter with some lights on it; this purpose-built laboratory
device has aroused both admiration (du Boulay and O'Shea and Monk, 1981) and disdain
(Sheil, 1981). Early experiments established that students with no prograrnrning
experience found it easier to write simple conditional programs using a particular
form of nested syntax than using an unconstrained GOTO language (Sime, Green and
Guest, 1973, 1977); in particular, with one syntax (called Nest-INE) they cleared
up bugs more easily. Subsequent experiments attempted to establish an explanation
of these results in a form that was sufficiently general and powerful to extend to
other constructions in prograrnrning. Unfortunately these experiments are often
regarded simply as comparisons of conditional designs, rather than comparisons of
classes of information structure in which the conditional serves as a representative
of many similar structures.

There are strong indications that the effects are caused by differences in the ease
of extracting information from programs, and in particular the ease of extracting
'circurnstantial' information: that is, discovering the circurnstances which cause a
condi tional program te behave in a specified way. Arnong these clues, Green (1977)
found that when professional prograrnrners answered circumstantial questions about
programs, the different syntactic designs greatly affected response times; whereas
when they answered sequential questions (the inverse of circumstantial - that is,
given the circurnstances they found the action) the different syntaxes made little
difference; a similar result, obtained with a quite different paradigrn, was
described by Green (1980). Another important indication was that when we returned

1Henceforth, MRC Applied Psychology Unit, 15 Chaucer Road, Cambridge.

103

to asking novices to write programs for the Htmgry Hare, using the worst of our
syntax designs, the G0TO or Jump language, we fotmd that their programs were more
likely to be correct first time if they were constrained to use GOT0s to simulate
nested conditionals instead of using them haphazardly - BUT they were no better at
correcting their mistakes than the tmconstrained group (see Arblaster et al., 1980,
for summary).

The obvious explanation is the one we have proposed: conventional, procedural,
programming language designs favour the extraction of sequential information, but
circumstantial information can be made more available by using a well-structured
design to make the information-gathering operations simpler, and making the infor
mation more visible with cues (here provided by Nest-INE). Can other explanations
be fotmd? 0ur experiments clearly showed that 'good structure' on its own was
insufficient, and indeed studies by Van der Veer and Van de Walde (1983) and
tmpublished studies by ourselves have fotmd cases where 'good structure' is cotmter
productive. In his review paper, Sheil (1981) suggests that variations in program
length, caused by the different syntax designs, may have caused these effects, but
since the same programs were used for both types of question in the studies described
by Green (1977) and Green (1980) I am at a loss to tmderstand his reasoning. It is
equally hard to tmderstand how his explanation would address the results on correc
tion of errors using constrained and tmconstrained G0T0s.

Pursuing our explanation leads to the following position. (1) The activities of
programming clearly involve both reasoning about programs, and discovering the facts
upon which reasoning is based. (2) Discovering the facts frequently means extract
ing information from written programs (or other notations, such as specifications,
manuals, post-mortem dumps, etc.). (3) Different classes of information structure
highlight different types of information; in particular, procedural programming
languages highlight sequential information, and declarative ones highlight circum
stantial information. (4) The availability of information is therefore limited by
the difficulty of extracting it from the given structure, and when there is amis
match - e.g. when requiring circumstantial information from a procedural program -
performance will be worse; this will create errors, slow up performance, impair
reasoning, encourage programmers to guess rather than make certain, etc. (S) The
problems can be ameliorated by adding cues; what the Nest-INE syntax did was to add
cues to help in the extracting of circumstantial information. (6) Simple models of
information extraction, using such mental operations as searching for labels,
negating predicates, performing parsing manipulations, etc., can not only accotmt
for the results but can also extend them to many other familiar aspects of programm
ing language design, such as parameter passing.

1.1 EXPERIMENT I: CUES AND STRUCTURE

In an experiment by Gilmore and Green (1984), we have gone some way to justify some
of these grand claims by a direct test of the 'mismatch hypothesis'. A short
algorithm was coded in four ways: either procedural or declarative and either with
cues or without cues. Subjects (non-programmers, to avoid effects of prior
experience) were asked questions that required either sequential information or
circumstantial information. Some of the questions were answered with the program in
front of them, some were answered from memory of the program. Full details of the
study cannot be given here, but Table 1 shows a sample of the results, taken from
the recall stage. The figures show quite clearly that cues improved performance in
mismatch conditions, as predicted. Moreover the differences between tmcued match
and mismatch conditions were in complete agreement with our predictions, although
in the cued conditions our predictions were slightly upset.

Although our explanation is not perfect, it is intuitively 'obvious' and it success
fully predicts effects tmknown to any competing theory. (Examples of competing
theories of program comprehensibility that cannot explain these results include the
'syntax-semantics' model of Shneiderman and Mayer, 1979; the structured programming

104

school; and the software science school fotn1ded by Halstead, 1977). It would be
extremely interesting to extend this line of research to much larger programs, to
see how it affects the work of professional programmers, but the practical diffi
culties have prevented that. However, the important point is that these effects
are, if our theories are correct, to be associated with classes of information
structure and with the specific tasks to which they are put, rather than with
choosing language F or language P.

TABLE 1
Percentage Correct, Experiment I, Stage 2:

Answering Questions from Memory

Effect Predicted
Mismatch conditions: No cues Cues of cues effect

Procedural 64 78 14 +
Declarative 60 73 13 +

Match conditions:

Procedural 68 64 -4 0
Declarative 72 74 2 0

2. WHAT MAKES COMMAND SYNTAX HARD?

Command languages usually have opaque syntax. Moreover, they are usually critically
dependent upon details of punctuation or spacing, for reasons which are not obvious
to novices. Some brief examples:

s/a\/&c/p\/q\&r&/
How the Unix 'ed' editor expresses "change 'a/?&c' to 'p/q&c plus whatever the
original string was", where '?' is a wildcard symbol

PIP A:TG*.* B: (VZ]
CP/M system instruction "copy all files on drive A matching the wildcard name TG*.*
onto drive B, masking off bit 8 and verifying the copy"

ATTACH(OLDPL,$:APPLSRCES.CERNPROGLIB(*MT),ST=Sl9)
Tuis is a magie Job Control Language command taken at random from a computer centre
manual. Novices often have to cope with a good deal of this sort of thing, usually
with little or no tn1derstanding of the structure of the command - not even at the
level of where spaces would be allowed, if anywhere.

There are many examples to be found. In modern systems great effort has been put
into avoiding the need for these horrors; màinframe operating systems may still
need to be addressed in such language, but in the micro world display editors have
replaced context editors and menus have superseded command strings. Nevertheless
command language syntax still has its uses. Because it is terse it is particularly
appropriate for use over slow telecommunications systems (try using a display editor
at 300 baud!), for cases where information must be densely packed, for the descrip
tion of batch jobs such as stream editing tasks, and for cases where menus are too
slow or use too much system memory. It also makes less demand on system programmers,
and in consequence systems built in a hurry are likely to interact through command
languages. For all these reasons, command language systems are likely to remain
alive and well for many years.

Ledgard et al. (1980) have demonstrated impressive improvements in the usability of
an editor by rewriting commands into what they called an 'English-like' form:

FIND:/TOOTH/;-1
RS :/KO/, /OK/; *

=>
=>

105

BACKWARD TO "TOOTH" or BA "TOOTH"
CHANGE ALL "KO" TO "OK" or CA "KO" T "OK"

One component of the improvement may indeed be English-likeness, but clearly the
'improved' notations do more than resemble English; they also display much more
clearly the underlying syntactic structure. Instead of the homogeneous strings of
inscrutable syrnbols, Ledgard et al. have divided their commands into four clearly
distinct fields, and have used quotation marks to show that two fields are special
ones to be taken literally. Since their users in fact used the abbreviated versions
the resemblance to English is much less striking than the improved perceptual
clarity.

2.1 EXPERIMENT II: PERCEPTUAL PARSING

Our first experiment (Payne, Sime and Green, 1984) investigated the improvement to
be gained from what we called 'perceptual parsing' - that is, providing cues, as
Ledgard et al., did, to display the underlying syntax.

We argued that evidence from many sources shows that typographical cues can help the
comprehension of complex textual material, including instructional text (Hartley,
1978), tables (Wright, 1977), diagrarnrnatic instructions (Szlichcinski, 1979) and
sheet music (Sloboda, 1981). These cues can be interpreted as methods for mapping
the structure of the information onto the spatial layout or other peceptual cues
(Green and Payne, 1982). Forceful argurnents have been presented by Bever (1970) to
suggest that even natural language is parsed more easily when perceptual strategies
can be used to supplement or to replace genuine syntax parsing. There is also a
certain amount of evidence that conventional prograrnrning languages are understood
more easily when the structure of programs is cued at the perceptual level
(Sheppard et al., 1981; Norcio, 1982; Miara et al., 1983).

The evidence at present therefore indicates that perceptual structure cueing does
indeed improve performance; but at present the evidence comes only from extremely
complex situations. Our experiment was designed to discover whether the effect also
extended to extremely simple situations. If so, one may be confident that it extends
even to simple cornrnands in simple text editors.

A very simple editing language was devised for editing single line phrases, using
paper and pencil cornrnands. A typical command was

3dBc

meaning "find the 3rd 'd' and put a 'c' before i t". Two dialects were used, in one
of which the operation codes were always in upper case, as in the example. In the
lower case dialect the same cornrnand would read

3dbc

Five operations were possible, as fellows:

insert after a or A
insert before b or B
change C or C
delete d or D
swap s or s

Exarnples:

lvau find the first v and insert u after it
3zbh find the third z and insert h before it
2wcy find the second w and change it toy

3xd
2ms

106

delete the third x
swap (exchange) the second m with the following letter

Ten subjects (students) learnt each dialect. Three types of task were devised, and
for each task, each subject completed six sets of eight problems, the order of sets
being controlled across subjects and tasks. The upper case dialect will be used for
illustrations.

Task 1, command generation: Subjects had to write down a command to effect an
alteration marked in a short phrase, e.g.

PROBLEM:
SOLUTION:

the paper ppresents
3pD

Task 2, command decoding: Given a seven letter string together with a command,
subjects had to mark the effect of the command, e.g.

PROBLEM:
SOLUTION:

kryhcb
krychcb

2rBc

Task 3, inverse commands: Subjects were shown a command, and a string that had
resulted from applying that command to an unseen string. They had to generate a
new command that would undo the effect of the given command and return the original
string, e.g.

PROBLEM:
SOLUTION:

2dAs
3sD

hdssdsw

We investigated two hypotheses. First, that the upper case commands would be easier
because the command strings could more easily be parsed into literal fields and
command field; second, that extra difficulty would be caused when the letters in
the literal field were the same as letters occurring in the command field, e.g.

2aAf

It even be the case that extra difficulty would be caused when letters in the literal
field were ones that might potentially occur in the command field, e.g.

2aCb

We shall refer to these two possibilities as 'perceptual parsing' and 'command
literal overlap'. It is difficult to separate them completely, but the six sets of
problems presented different degrees of overlap to the subjects. (See Payne et al.,
1984, fora fuller description of the design.)

Bath times and errors were recorded. The times for the subjects using the upper
case dialect were slightly faster, but the difference was not statistically signifi
cant. In each of the three tasks, however, the upper case group made far fewer
errors than the lower case group (Table 2), and these differences were statistically
highly significant. There was no sign of any differences between the various amounts
of overlap.

The differences were statistically highly significant for each task, using bath para
metric and distribution-free tests (see Payne et al., 1984, for details). We con
clude from this experiment that perceptual structure cueing makes a real difference
to performance even in a very simple command language.

The simplicity of the language is most important. Nobody would be surprised if
perceptual cues made it easier to use extremely complicated systems. What we have
shown is that perceptual effects persist into regions of such simplicity that one
would surely not expect them, regions where system designers might easily say
"Surely nobody could get that wrong". The implication is that thought should

107

ALWAYS be given to providing perceptual cues, wherever the command language contains
more than a shred of syntactic structure.

TABLE 2
Error Scores, Experiment II

Overlap conditions: 1 2 3 4 s 6

Task 1 lower case 9 7 9 16 10 9
upper case 0 4 4 s 2 4

Task 2 lower case 3 1 1 3 3 3
upper case 0 0 0 0 0 0

Task 3 lower case 10 7 8 9 10 6
upper case 3 1 0 2 1 3

2.2 EXPERIMENT I II: A SPEECH-DRIVEN TEXT EDITOR

If we extend the argument, it leads to the suggestion that syntactically distinct
fields of commands should be made as perceptually distinct as is conveniently
possible. An attractive possibility is to combine our interest in command language
design with current interest in speech recognition devices and what they might be
used for. Our next study therefore used a simple device, capable of recognising a
small number of spoken words with tolerable accuracy, for controlling a text editor.
The device in question was a Heuristics Speechlink attached to an Apple computer,
and obtaining usable recognition performance from it was a study in itself which we
shall not describe here (see Green, Payne, Morrison and Shaw, 1982).

For this experiment, performed by Morrison, Green, Shaw and Payne (1984), we built
an editor that could be driven either by spoken commands or by commands entered with
function keys; in either case, the associated literal strings were typed in the
conventional manner. We hypothesized that speech- driven editing would be an improve
ment over pure keyboard editing, since it would eliminate confusion between command
and literal and thereby lower the mental workload.

We also compared two language designs. Both languages were based around context
editing (e.g. "find the string APPLE"), but in one design, called the Many Commands
editor, the language included a large number of different commands, each of which
was rèlatively weak; in the other design, the Few Commands editor, there were fewer
commands to choose from, but each one was more powerful. The difference was most
apparent with the cut-and-paste operation. Suppose we wish to move the block of
lines starting with the string APPLE and ending with the string PEAR, placing them
in front of the line containing the string ORANGE. In the Many Commands editor, at
least 6 commands would be needed:

locate the cursor at the start of bleek:
place Start-Marker
find PEAR:
place Finish-Marker:
find ORANGE:
move block:

LOCATE APPLE
BEGINNING
LOCATE PEAR
FINISH
LOCATE ORANGE
TRANSFER

In the Few-Commands editor, however, only one command would be needed:

TRANSFER APPLE PEAR ORANGE

Remember that all the commands, LOCATE etc., were either spoken or else were single
function keys, while the parameter strings APPLE etc., were typed in full.

108

We suggest that the Many Commands (MC) editor will be easier because the user receives
knowledge of results at each step. In particular, we believed that the text editor
would be particularly difficult with the Few Commands (FC) editor because the
potential confusion between literals and commands would interact with the increased
men tal laad.

We compared the performance of four groups of subjects: professional typists and
non-typists using the MC and FC editors. Each subject attended four sessions last
ing approximately 1 hour each, during which she edited documents presented to her on
screen and made changes as indicated on a marked - up printed copy of the document.
All the subjects used their editor, either the MC or FC version, bath as a speech
driven tool and also as a keyboard-only tool. In the speech mode, subjects spoke
the commands into a microphone, first depressing a foot switch; then the parameter
strings were typed on the keyboard . (If the computer failed to recognise the
command it displayed the word PARDON?) In the keyboard mode the subject pressed a
function key instead of using the microphone. Parameter strings on the keyboard
were ended in bath conditions by pressing the RETURN key . Accuracy, speed, and -
most important - subjective ratings were all recorded, the ratings being obtained
from questionnaires and from structured interviews at the end of the first and fourth
sessions.

The results of this study were qui te mixed. Times differed little; speech input
tended to be slower, but that might well have been because the speech recognition
device was slow to operate. There was no significant advantage for either the MC or
the FC editor. Not surprisingly, speeds increased wi th practice, and the typists were
'almost significantly' faster than the non-typists.

Error frequencies were also quite similar for the two editors, hut there were strong
interaction effects. Wi th the MC editor non-typists managed about equally well wi th
speech or with keyboard, but typists made significantly fewer errors when using
speech. With the FC editor a different interaction showed - non - typists using
speech made fewer errors than typists using speech. The suitability of speech
appears to depend upon who is using i t for what purpose.

.,.
C

~
C
0

~

10 (al

,~

(bi

o---=BTK NK

TK~NS TS
/NS

NK

~TS

....
1 1

2
Interview

FIGURE 1

Overall ratings of attitudes averaged
over subjects. Interview 1 took place
after one hour of practice, interview 2
after four hours. Highest ratings
express most satisfaction.

(a) = MC editor, (b) = FC editor, TK
typists + keyboard, TS = typists +
speech, NK = non-typists + keyboard,
NS= non-typists + speech.

Subjective assessments strongly reinforced this conclusion. In particular, typists
using the FC editor grew to dislike it quite firrnly (see Figure 1). Even non
typists grew to prefer keyboard input! Comments on the problems of switching
between modes, speech to typescript, were frequent.

It would seem, therefore, that our argurnents concerning perceptual parsing do not
extend as far as this. When extra effort (pressing a foot switch, changing mode
between speech and typing) is required, plus extra time for decoding the spoken
command, subjects prefer to stick to the keyboard. However, the experiment confirmed

109

one of our hypotheses, namely that the FC editor would create additional difficulties
for users and would exacerbate any existing problems.

3. WHY DO USERS MAKE MISTAKES?

Everyday observation suggests that some computer systems entice their users into
mistakes more aften than others: try counting how often you hear people exclaim
"Dear me, I'm ALWAYS doing that!!". The most interesting problems are 'slips' -
errors made by experts, sometimes defined as 'actions not as planned' (Reason, 1979)
or as 'the error that occurs when a person does an action that is not intended'
(Norman, 1981). There have been recent attempts to classify and explain persistent
slips, which would be especially fruitful if they led us to design 'non-slip'
systems. Since slips are, by definition, made by experienced users, the available
theories concentrate on what happens inside users as they become expert.

Reason (1979) considered the detailed consequences of the shift from 'controlled' or
'closed- loop' control, as in novices, to 'automatic' or 'open-loop' control, as in
experts. Diaries of slips in everyday life, kept by volunteers, together with
theoretical considerations of the nature of the motor program theory of skilled
performances, led him to classify four types: test fail ures, which occur when the
open-loop mode of control coincides with a decision point in a motor program where
the strengths of competing motor programs are markedly different; discrimination
failures, when, during open loop control, the wrong stimulus is accepted (e.g. salt
for sugar); forgetting previous actions, possibly caused by switching from open
loop control to closed during a critical phase of an action sequence; and finally
omissions, tending to occur when unexpected events took the place of expected events.

A somewhat more detailed analysis, applying especially to typing errors, was offered
by Norman (1981, 1983). In his ATS (activation-trigger- schema) model, a skilled
sequence starts with a parent schema, representing the initial goal, which can invoke
child schemas as required to achieve subgoals. Each schema is provided with an
activation level and with a set of specific conditions that are required for it to be
triggered, although an exact match is not required. At any one time during the
execution of a high level skill, many schemas will be active, competing with each
other. The ATS analysis is most at home in explaining capture errors , which resemble
Reason' s discrimination fai lures, since they occur "when there is overlap in the
sequence required for the performance of two. different actions, especially when one
is done considerably more frequently than the other". Norman offers a number of
examples of slips in interacting with computers. For instance, in a well-known·text
editor "the command ':w' means to write the file. ':q' quits the editor ... and the
combined sequence ':wq' writes, then quits". The ':wq' soon gets automatised and
c~ptures the ':w'. A solution, according to Norman, would be to use a completely
different sequence, such as ':zz;, in place of' :wq'.

3.1 DISCRIMINATION FAILURES AND THE USER'S MODEL OF THE TASK

Research at Sheffield has attempted to extend these models of slips (Green et al.,
1984). Two principal extensions have been made. First, it is clear that the user's
representation of the command language and the editing task will affect the number,
frequency, and type of slips. We have argued elsewhere (Payne and Green, 1983;
Green and Payne, 1984) that the user's knowledge of the command language includes
knowledge of family resemblances between rules, allowing users to work out one rule
from their knowledge of other rules - as long as the language is consistent. Payne
(1984) has extended this line of argument, developing a generative model of the user's
knowledge of the task structure in which features of the task are used to determine
the action of the generative grammar, For instance, one part of the task structure
may be modelled as a production rule such as this:

110

IF a goal is to correct a word
AND the word is to the right of the cursor on the same line
11-IEN move [forward, word]

The square brackets mark features, used subsequently to direct the generation of the
required cornrnand. In the Mince editor, that might be CTRL-W, derived as follows:

move[forward, word] -> syrnbol [forward] + letter [word]
symbol [forward] -> CTRL (other rules specify syrnbol [backward], etc)
letter [word] -> W (other rules specify letter [character], etc)

We postulate, admittedly with no evidence at present, that discrimination failures
may occur during the derivation of task actions. In particular, the interpretation
stage during which the task 'move [forward, word]' generates the required action may
be subject to slips involving features. If so, typical slips would be to move in
the wrong direction or by the wrong size unit, in the systern we have mentioned;
but in other systems, where the structure of the task - action relationship is
different, a different feature set would have been learnt, different derivations
would be used, and different slips would occur.

Tuis model, we observe, makes different predictions from Norman's in some respects.
In particular, in the example of Norrnan's cited above our model would attach the
feature [finished] to certain tasks, such as qui tting the editor and (probably) to
writing the edited document to file. That feature would still be attached to
Norrnan's proposed new cornrnand, ':zz', and therefore according to our model slips
would still occur, although at a reduced level compared to the version in which the
action sequences overlapped.

3.2 INTERNAL STRUCTURE OF ACTION SEQUENCES

It is inconceivable that chains of actions are formed like rows of beads, with no
internal structure. Nurnerous studies have demonstrated that patterning is swiftly
perceived in a variety of contexts, and many attempts have been made to characterise
the underlying psychological processes. For instance, Restle (1970) developed a
theory of hierarchical representation. Given an alphabet 1-6 and the basic sequence
X = (1, 2), the operation R ('repeat of x') produces the sequence 1 2 1 2, the opera
tion M (' mirror') pro duces the sequence 1 2 6 5, and the operation T (' transposi tion')
produces 1 2 2 3. Then M(T(R(T(l)))) describes the sequence 1 2 1 2 2 3 2 3 6 5 6 5
5 4 5 4. There has been considerable activity in this area.

Norman's ATS typing model contains provision for 'repetition' and 'alternation'
operators, but it is evident that much more advanced patterns are perceived. No
doubt designers of cornrnand languages would like their users not to pay attention to
such distractions as the internal patterning of response sequences. Unfortunately
that is not easy, and as a skill becomes automatised it is likely that patterning
will make itself felt by distorting the user's representation of the language.

An example of such distortion occurs, we believe, with the CP/M editor called VEDIT,
distantly related to TECO. In cornrnand mode, typical cornrnands include the following:

V B F ••• @ s ... @ ••• @

These respectively switch mode, find the beginning of the text, find a specified
string terrninated by the @ syrnbol, and substitute one string for another - each of
the strings being terminated by the @ symbol. Cornrnands can be strung together thus:

BFwinter@Ssnow@sunshine @@

meaning "go to the beginning of the text, look for the string 'winter', and change
to next 'sunshine' to 'snow'".

111

In VEDIT each command string ends with two occurrences of the@ symbol. Needless to
say this fact rapidly gets automatised, since direct repetition of symbols is a
powerful component of the internal structuring of sequences, and creates remarkable
difficulties in learning to construct complex command chains. The problem is made
worse because the grammar is somewhat inconsistent; if the last command of a chain is
V then the user must hit@ twice, but if the last command is F or S then that command
already incorporates one@ (to terminate the parameter string) and so only one extra
@ is required. It is doubtful whether the designers made much attempt to formalise
the command language of VEDIT!

A simple solution might be to use an entirely different symbol to terminate the
command string. More generally, designers of command language systems should be
aware that users build internal structures of their more common action sequences.
When the internal structure is likely to distort their view of the language they will
run into difficulties, either by becoming confused about how the language works or
else by making large numbers of slips.

4. TEXT EDITOR DESIGN

It is a well-established fact of cogn1t1ve psychology that we humans impose structure
upon the world. We do not treat each thing as unique and alone, but instead we search
for or we invent groups and families, resemblances and subsets, patterning and criss
crossing resemblances between one thing and another. The 'take-home' message of the
recent experiments at SAPU Sheffield, is that structure affects performance in human
computer interaction, as it does everywhere else. Even in very simple tasks we are
helped by perceptual cues to structure. Even in very well-learnt tasks (or perhaps
especially in those) we are disturbed and we make mistakes if the system entices us
into inappropriate structures. In their remarkable and pioneering book, Card, Moran
and Newell (1983) give structural effects much less prominence than they deserve.

Another problem area in text editor design is the input system. Our work with a
speech recognition device showed us that it was not immediately liked, and that it
was liked still less after 4 hours' use. Apparently subjects disliked switching
between speech and type. This immediately reminds us of the fashion for mice as
input methods. The fashion seems to have been started by experiments with a small
number of subjects performing rather specialised task, reported by Card et al. (1983)
and elsewhere; although publicity managers may adore the mouse, and although they
may be excellent for freehand drawing, as pointing devices within typescript they
suffer because hands have to leave the keyboard. It would be extremely interesting
to see a proper evaluation of the mouse.

In fact the current fascination with mice, with speech recognition, and with high
resolution display technology is hiding some deeper problems in text editor design.
Here are two to end on.

(1) The low-level functionality of editors is aften poor. They cannot interact
gracefully with the operating system, for instance; and typically their operations
are specified in terms that are alien to users, such as character sequences instead
of word sequences, which makes many operations unnecessarily difficult (Green, in
press, analyses four editors in detail from this viewpoint).

(2) The detailed behaviour of many editors is illogical and inconsistent, and there
fore is hard to describe accurately and succinctly. Consequently users get nasty
surprises, either from their imperfect understanding of vague descriptions or else
from bugs left lurking in vague code. Sufrin (1982) describes how an editor can be
implemented from a rigorous formal specification and can be proved correct; this
promising development shows that the structure of an editor can naw be weîl-specified.
If, in addition, we can create rules that will produce structures that are also appro
priate to human use, and, where necessary, highly visible, we shall indeed have made
progress.

112

REFERENCES

Arblaster, A.T . , Sime, M.E. and Green, T.R.G. (1980). Jumping to some purpose.
Computer Journal, 22, 105-109.

Bever, T.G. (1970). The cognitive basis for linguistic structures. In Hayes, J.
(ed.) Cognition and the Development of Language. New York: Wiley.

Card, S., Moran, T. P. and Newell, A. (1983). The Psychology of Human-Computer
In teraction. Erlbaum.

Du Boulay, B., O'Shea, T. and Monk, J. (1981). The black box inside the glass box:
Presenting computing concepts to novices. International Journal of Man - Machine
Studies, 14, 3, 237-250.

Gilmore, D.J. and Green, T.R.G. (1984). Comprehension and recall of miniature
programs. International Journal of Man - Machine Studies, 20, in press.

Green, T.R.G. (1977). Conditional program statements and their comprehensibility tó
professional programmers. Journal of Occupational Psychology 4, (50), 93-109.

Green, T.R.G. (1980). IFs and THENs: Is nesting just for the birds? Software
Practice and Experience, 10, 373- 381.

Green, T. R. G. (in press). Global search and replace facili ties: A detai led study
of four CP/M text editors. Behaviour Information and Technology, in press.

Green, T.R.G. and Payne, S.J. (1982). The woolly jumper: Typographic problems of
concurrency in information display. Visible Language, 16, 391-403.

Green, T.R.G. and Payne, S.J. (1983). Organization and learnability in computer
languages. International Journal of Man-Machine Studies, 20, in press.

Green, T.R.G., Payne, S.J., Morrison, D.L. and Shaw, A.C. (1982). Friendly inter
facing to simple speech recognizers. Behaviour Information and Technology, 2,
23-38.

Green, T.R.G., Payne, S.J., Gilmore, D.J. and Mepham, M. (1984). Predicting expert
slips. Proceedings of INTERACT '84, 1st IFIP Conference on Computer Human Factors.

Halstead, M.E. (1977). Elements of Software Science. New York: Elsevier.
Hartley, J. (1978). Designing Instructional Text. London: Kegan Paul.
Ledgard, H. , Whi teside, J. A., Navarro, J. A. and Shneiderman, B. (1983). Comprehen

sibili ty of programs as a function of identation. Communications of the ACM,
23,556-563.

Morrison, D.L., Green, T.R.G., Shaw, A.C. and Payne, S.J. (1984). Speech-controlled
text-editing: Effects of input modality and of command structure. International
Journal of Man-Machine Studies, 20, in press.

Norcio, A.F. (1982). Identation, documentation and programmer comprehension.
Proceedings of ACM Conference "Human Factors in Computer Systems", Gaithersburg,
Maryland.

Norman, D. A. (1981). Categori zat ion of act ion slips. Psychological Review, 88, 1- 5.
Norman, O.A. (1983). Design rules based on analyses of human error. Communications

of the ACM, 26, 254- 258.
Payne, S.J. (1984). Task-action grammars. Proceedings of INTERACT '84, 1st IFIP

Conference on Computer-Human Factors.
Payne, S.J. and Green, T.R.G. (1983). The user's perception of the interaction

language: A two-level model. Proceedings CHI '83 ACM/IEEE Conference on Human
Factors in Computer Systems.

Payne, S.J., Sime, M.E. and Green, T.R.G. (1984). Perceptual cueing in a simple
command language. International Journal of Man-Machine Studies, 20, in press.

Reason, J. (1979). Actions not as planned: The price of automatization. In
G. Underwood (ed.), Aspects of Consciousness, . Vol I, London: Academie Press.

Restle, F. (1970). Theory of serial pattern learning: Structural trees.
Psychological Review, 77, 481 - 495.

Sheil, B. (1981). The psychological study of programming. Computer Services, 13,
101-120.

Sheppard, S.B., Krues, E. and Curtis, B. (1981). The effects of symbology and
spatial arrangement on the comprehension of software specifications. Proceedings
5th International Conference on Software Engineering, 207-214.

Shneiderman, B. and Mayer, R. E. (1979). Syntactic/Semantic interactions in pro
grammer behaviour: A model and experimental results. International Journal of
Computer and Information Sciences, 8, 219-238.

113

Sirne, M.E., Green, T.R.G. and Guest, D.J. (1973). Psychological evaluation of two
conditional constructions used in computer languages. International Journal of
Man-Machine Studies, 5, 105-113.

Sirne, M.E., Green, T.R.G. and Guest, D.J. (1977). Scope rnarking in computer
conditionals: A psychological evaluation. International Journal of Man - Machine
Studies, 9, 107- 118.

Sloboda, J. (1981). Space in music notation. Visible Notation, 15, 86-110.
Sufrin, B. (1982). Formal specification of a display-oriented text editor.

Science of Computer Programming, 1, 157- 202.
Szlichcinski, K.P. (1979). Telling people how things work. Applied Ergonomics, 10,

2- 8.
Van der Veer, G.C. and van de Wolde, G.J.E. (1983). Individual differences and

aspects of control flow notations. In T.R.G. Green, S.J. Payne and G.C. van der
Veer (eds.), The Psychology of Computer Use. London: Academie Press.

Wright, P. (1977). Presenting technical information: A survey of research findings.
Instructional Science, 6, 93- 134.

SOFTWARE ENVIRONMENTS

ACTIVE HELP SYSTEMS

Gerhard Fischer, Andreas Lemke and Thomas Schwab

Research Group on Knowledge-based Systems and Human-Computer Communication
Department of Computer Science, University of Stuttgart

Federal Republic of Germany

Good on-line help systems are of crucial importance for the computer systems of the
future. An increased functionality (required by the many different tasks which a user
wants to do) will lead to an increased complexity. Empirical investigations have
shown that on the average only 40% of the functionality of complex computer systems
are used. Passive help systems (which require that the user requests help explicitly
from the system) are of little use if the user does not know the existence of a sys
tem feature. Active help systems should guide and advise an user similar to a
knowledgeable colleague or assistant.

1. INTRODUCTION

The purpose of computer-based man-machine systems is to direct the computational
power of the digital computer to the use and convenience of man. There has been
great progress towards this goal and the dramatic price reduction in hardware has led
to totally new possibilities. But other aspects have not kept pace with this
progress, especially how easy it is (not only for the expert but also for the novice
and the occasional user) to take advantage of the available computational power to
use the computer (fora purpose chosen by him/herself 1

).

Most computer users feel that computer systems are unfriendly, not cooperative and
that it takes toa much time and toa much effort to get something done. They feel that
they are dependent on specialists, they notice that software is not soft (i.e. the
behavior of a system cannot be changed without a major reprogramming of it) and the
casual user finds himself in a situation like in instrument flying: he needs lessons
(relearning) after he did not use a system fora long time.

Our goal is to create symbiotic, knowledge-based computer support systems which
handle all of their owner's information-related needs (these needs will be quite dif
ferent for different groups of users).

Our system building efforts can be characterized with the following metaphor: the
user of an interactive system is like a traveler on a modern highway system with
(maybe ill-defined) goals, methods, heuristics and decision points; the user support
systems serve as tour guides who provide assistance if requested and who point out
interesting places (based on knowledge about the traveler and the country-side).

2. USER SUPPORT SYSTEMS

The user-support systems which we envision must be build as knowledge-based systems.
First the architecture of knowledge-based systems will be described and then several
kinds of user support systems will be briefly characterized.

117

2 . 1 Knowledge-based Human-Computer Communication (HCC)

Knowledge-based systems are one promising approach t o equip machines with some human
communication capabilities. Based on an analysis of human communication processes we
have developed the model shown in Figure 2-1.

Knowledge about:

C>
0
,:,

Q
0

•
1

/

Figure 2-1:

• problem domain
• communica t io n pr ocesses
• communicatio n partne r
• problems of the user

and tutorial intervention

i mp licit
comm unicatio n cha nnel

Lii /11117
ex pl ici t

communicatio n channel

kno wl edge

base

Architecture for knowledge-based HCC

The system architecture in Figure 2-1 contains two major improvements compared to
traditional approaches:

1. the explicit communication channel is widened. Our interfaces use windows
with associated menus, pointing dev ices, color and iconic representations;
the screen is used as a design space which can be manipulated directly
(see Figure 4-1).

2. information can be exchanged over the implicit communication channel. The
shared knowledge base eliminates the necessity that all i nformat i on has to
be exchanged explicitly.

The four domains of knowledge shown in Figure 2-1 have the following relevance:

1. knowledge of the problem domain: research in Artificial Intelligence has
shown that intelligent behavior builds upon large amounts of knowledge
about specific domains (which manifests itself in the current research ef
fort surrounding expert systems).

2 . knowledge about communication processes: the information structures which
control the communication should be made explicit, so the user can manipu
late it.

3. knowledge about the communication partner: the user of a system does not
exist; there are many different kinds of users and the requirements of an
individual user grows with experience.

118

4. knowledge about the most common problems which users have in using a sys
tem and about tutorial invention: this kind of knowledge is required if
someone wants to be a good coach or teacher and not only an expert; an
user support system should know when to interrupt a user.

Knowledge-based communication allows to replace canned informa~ion structures (like
they were used in traditional CAI) with dynamically generated information based on
the contents of the underlying knowledge base.

2.2 Tutorial systems

Tutorial (or instructional) system should assist a learner; the material is presented
based on psychological and pedagogical considerations. The learner (not familiar with
the concepts and with the structure of the system) is unable to articulate his goals.
The interaction is determined toa large extent by the system and therefore the in
formation can be structured in advance. A (not too sophisticated) example of this
sort of system is the LEARN system embedded in UNIX. In our work we try to enhance
tutorial systems with modern HCC techniques, e.g. the dynamic generation of visual
representations (see Figure 4-1; (Nieper 83)).

2.3 Explanation Systems

Information processing using the implicit communication channel (see Figure 2-1) im
plies that a system infers information, makes assumptions and draws complex conclu
sions. Explanation systems should provide insight into complex computations. The user
has communicated a goal to the system and he wants to have feedback what the system
has done. In a system which makes extensive use of defaults (e.g. the document
preparation system ~CRIBE) it is important that the user can ask the system to ex
plain which default assumptions exist and how they contribute toa certain outcome.

2.4 Documentation Systems

We consider a documentation system as the kernel of a software production environ
ment. It contains all the available knowledge about the system combined with a set
of tools useful to acquire, store, maintain and using this knowledge. It serves as
the communication medium between clients, designers and users throughout the entire
design process. A valid and consistent documentation during the programming process
itself is of special importance in incremental design processes to provide answers to
the questions: what has been done, what is the next thing to do, how does the current
implementation compare with the specifications, etc .. DOXY (Lemke, Schwab 83) is a
prototypical implementation of our general approach (Fischer, Schneider 84) to build
computer-supported program documentation systems.

2.5 Help Systems

Help systems should assist the user in specific situations. The user knows his goals
but he cannot communicate them to the system (passive help systems) or he does not
know that the system offers better ways to achieve the task (active help systems).
Contrary to tutorial systems help systems cannot be structured in advance but must
"understand" the specific contexts in which the user asks or needs help. The inter
action is much more initiated by the user (in passive help system) or mixed
initiative (in active help systems) than in tutorial systems.

In the remaining part of the paper only help systems will be discussed and our system
building efforts in constructing them will be described.

119

3. HELP SYSTEMS

An increased functionality (required by the many different tasks which a user wants
to do) will lead to an increased complexity. Empirica! investigations have shown
that on the average only 40% of the functionality of complex computer systems are
used. Figure 3-1 is based on our empirica! investigations through careful obser
vations (e.g. persons using systems like UNIX, EMACS etc. in our environment) and
describes different levels of system usage which is characteristic for many complex
systems. The different domains correspond to the following:

Dl: the subset of concepts (and their associated commands) which the user
knows and uses without any problems.

02: the subset of concepts which he uses only occasionally. He does not
know details about them and he is not too sure about their effects. A passive
help system can help him to take advantage of the commands in D2.

03: the mental model (Fischer 83) of the user, i.e. the set of concepts
which he thinks exist in the system.

04: D4 represents the actual system. Passive help systems are of little use
for the subset of D4 which is not contained in D3, because the user does not
know about the existence of a system feature. Active help systems which ad
vise and guide an user similar toa knowledgeable colleague or assistant are
required that the user can incrementally extend his knowledge to cover D4.

Figure 3-1: Different levels of system usage

Based on these findings it is obvious that a good help system must have a passive and
an active component. Nearly all existing help systems are passive help systems where
the user takes the active part and the system responds to his requests. Possible in
teraction techniques are menus, keywords and natura! language. Some help systems are
built as browsers in a large network of descriptive information where the user moves
around and searches answers to his problems.

3.1 Passive Help Systems

3.1.1 Keyword based Help Systems

Assuming a user knows the name of a command but not its details, keyword based help
systems are a quick, easy to implement and sufficiently reliable choice. Many of
these help systems still fail when the user does not know the exact name . The success
rate can be improved by adding synonym lists and pattern matching capabilities which
make is possible to express problems in different ways.

120

Keyword based help systems can be used for: explanation of terms, description of com
mands and function keys, and search for related concepts. They are of little help
clarifying general topics where it is difficult or impossible to describe the needed
information with a single word. Existing keyword help systems are statie and do not
take the user's special situation or his level of expertise into account. Therefore
in many situations too much information is provided.

3.1.2 Natural Language Based Help Systems

Natural language provides a wider communication channel between the user and the sys
tem than menu selection or keyword based interaction. Observation of human "help
systems" suggests that aften a dialog rather than a single question and answer is
necessary to identify the user's problem or to explain a solution. Natural language
based help systems offer the following possibilities:

1. the user has multiple ways to formulate a problem. Natural language
provides much more flexibility than the best synonym lists.

2. with natural language failures are soft. Most of the user's utterances
give at least a hint to where the problem lies.

3. misconceptions of the user can be identified from his utterance. This
gives an important clue for building a user model.

4. the user can not only ask a specific question, but he can describe his
goals, his intentions and his difficulties.

A problem for novices is to find the appropriate words to describe their problems
based on a lack of experience in talking about concepts of the used computer systems.

Current natural language systems implement only a restricted subset of natural lan
guage. It is an unresolved problem how to describe this subset to the user. It may
well be that it is easier for the user to learn a formal way of expressing his needs
than learning the restrictions in the natural language interface.

3.2 Active Help Systems

There are many different systems aids which can be considered as active help systems.
Canned error messages occurring every time the user does something wrong are the
simplest form of an active help system. The active help systems which we envisioh do
not only respond to errors but notice -- based on a model of the user and the task
-- suboptimal actions of the user. In an operating system the user may issue the se
quence of commands:

DELETE PARSE.PAS.l
DELETE PARSE.PAS.2
DELETE PARSE.PAS.3

leaving the file PARSE.PAS.4. An active help system (Finin 83) might offer the ad
vice to use the command "PURGE PARSE.PAS" which deletes all the old versions of a
file.

A metric is necessary to judge how adequate an action of the user is. Except for
simple problem domains (e.g. a game where an optimal metric can possibly be defined
(Burton, Brown 76)), optimal behavior cannot be uniquely defined. Our actual im
plementations (see section 5) of help systems are constructed for an editing system
and the metric chosen is the number of keystrokes. There is no doubt that this is a
very crude and questionable metric. In our future work we will represent more ap
propriate metrics, e.g. like defining the right relation between cognitive and physi
cal effort.

121

If a user and a help system rely in their understanding on a very different metric
the same difficulty like with human help occurs: the help system "forces• the user to
do something which he does not want to do. A possible solution to this problem might
be to make the metric visible and to allow the user to change it; hut we must be
aware that this increases the control of the user as well as the complexity of the
system and it will be of little use if we do not find adequate communication struc
tures for it.

4. REQUIREMENTS FOR HELP SYSTEMS

This section describes issues which are relevant for bath types of systems described
in the next section.

4.1 The user as an information processing system

Design guidelines must be based on a thorough understanding of the strength and
weaknesses of the human information processing system. In our werk we have paid spe
cial attention to the following issues:

1. the power of the visual system as a very efficient chunking method should
be utilized. In Figure 4-1 (Nieper 83) we show a visual representation of
a LISP data structure which gets generated automatically from the symbolic
representation. Given the following lists

11 <;; ((eins 1) (zwei 2))
12 <;; ((drei 3) (vier 4))

the two operations APPEND and NCONC generate on the surface the same
result

(append 11 12) ;> ((eins 1) (zwei 2) (drei 3) (vier 4))
(nconc 11 12) ;> ((eins 1) (zwei 2) (drei 3) (vier 4))

Figure 4-1: Visualization techniques to assist in LISP programming

The visualization in Figure 4-1 shows what really happened: APPEND is a
nondestructive operation hut uses up two more memory cells whereas NCONC
is a destructive operation.

122

2 . recognition memory provides different access mechanisms compared to recall
memory; therefore menu-based system and property sheets (like in the STAR
interface) may be helpful for the novice and the casual user.

3. the scarce resource in human-computer systems is not information but human
attention; this implies that techniques for intelligent summarizing,
prefolding of information etc. have to be developed based on a model of
the user.

4. our short term memory is limited, i.e. there is a very finite number of
things which we can keep in mind at one point of time. Help systems
describe and illustrate features about certain aspects of a system; in
many cases it is necessary to see bath information structures at the same
time which requires window systems .

5. our systems must be consistent and uniform for the user and consistency
must be based on an adequate model of how a system will be used. Help
systems are part of the system and therefore they should have the same in
terface as the other parts of the system. Otherwise the well-known situa
tion will occur that we need a help systems to use the help system.

4.2 Modeling the user

Many existing help systems do not take an individual user's special situation or his
level of expertise into account. The following knowledge structures have to be
represented:

1. the user's conceptual understanding of a system (e.g. in an editor, text
may be represented as a sequence of characters separated by linefeeds
which implies that a linefeed can be inserted and deleted like any other
character).

2. the user's individual set of tasks for which he uses the system (a text
editor may be used for such different tasks as writing books or preparing
command scripts for an operating system).

3. the user's way of accomplishing domain specific tasks (e.g. does he take
full advantage of the systems functionality?).

4. the pieces of advice given and whether the user remembered and accepted
them

5. the situations in which the user asked for help .

One main task of an active help system is to monitor the user's behaviour and reason
about his goals. Sources for this information are: the user ' s actions including il
legal operations. This is based on the following hypotheses (Norman 82):

"a user does not make arbitrary errors; all operations are iterations
towards a goal."

Classification of users with the help of stereotypes can be used to make assumptions
about the expected behaviour of the user (Rich 79).

4.3 Modeling the task domain

Knowledge about the task domain impos&s constraints on the number of possible ac
tions. A wodel of the task domain describes reasonable goals and operations . In UNIX
if a user needs more disk space it is in genera! not an adequate help to advise him

123

to use the command "rm * "2 (Wilensky 83).

The user's goals and intentions can be inferred in situations where we understand the
correspondance between the system's primitive operations and the concepts of the task
domain. If the user of an editor repeatedly deletes characters up to the beginning
of a word this can be recognized as the higher level concept delete-beginning-of
word. In ACTIVIST (see section 5.2) these concepts are modeled as plans.

This mapping should be bidirectional. Given a problem of the task domain, a help sys
tem must be able to indicate how it can be solved using the primitive operations
(e.g. in the domain of text editing the help system finds the sequence of operators
delete-region insert-region for the user's goal of moving a piece of text).

4.4 Help Strategies

Help systems must incorporate tutorial strategies which are based on pedagogical
theories, exploiting the knowledge contained in the model of the user. Stragegies em
bodied in our systems are (Fischer 81):

1. Take the initiative when weaknesses of the user become obvious. Not every
recognized suboptimal action should lead toa message. Only frequent sub
optimal behaviour without the user being aware of it should trigger an ac
tion of the system.

2. Be non-intrusive. If the user does not accept our suggestions, let him do
the task in his way. ·

3. Give additional information which was not explicitly asked for but which
is likely to be needed in the near future.

4. Assist the user in the stepwise extension of his view of the system. Be
sure that basic concepts are well understood. Don't introduce too many new
features at once (Fischer 81).

5. PROTOTYPICAL IMPLEMENTATIONS

In this section a passive and an active help system for the editor BISY are described
which we have developed and implemented. BISY (Bauer 84) is an EMACS-like, screen
oriented editor, also developed in our research group.

BISY was chosen for the following reasons:

* Editing is a task domain which is complex enough but well understood.

* BISY is integrated in our werking environment (where we have a wide
variety of tools at our disposal: LISP, OBJTALK, a window system etc.).
Therefore it was easy to add a help system as an additional feature.

* Editing systems are an often used tool in our work and therefore it is
easy to get feedback about the usefulness of our help systems.

The current implementation of the two help systems can only deal with Cursor movement
and deletion tasks. In this domain BISY offers a rich set of operators. In addition
to character oriented commands there are higher level operations for words, lines,
paragraphs and lists. The systems' level of understanding is limited to these con-

124

cepts. Concepts of subject domains in which editors are used (e.g. address in a
letter) are not handled in the current implementation.

5.1 PASSIVIST: An Example fora Passive Help System

PASSIVIST (Lemke 84) is a natura! language based help system for the editor BISY.
The first step in the design of this system was to get an impression of the real
needs of the user. In several informal experiments a human expert simulated the help
system in editing sessions with users of different expertise. The results indicated a
fairly diverse set of problems ranging from finding keys on the keyboard up to com
plex formatting tasks.

PASSIVIST provides help to requests like (translated into English):

* How can I getto the end of the line?
* I want to delete the next word.

A passive help system has the choice between the following help modes:

* Explain: The system gives hints (e.g. classifies the problem, reminds the
user of certain facts) to assist him to solve the problem himself.

* Solve: The system provides and explains a complete solution.

* Demonstrate: The solution of the user's problem will not only be explained
but each step will be demonstrated.

* Execute: Sometimes a solution may be too complicated to present toa begin
ning user. In these cases the system simply does what the user wants to do.

PASSIVIST uses a combination of the first and the third strategy in which each step
of the solution is presented and explained to the user who then executes this step
and sees immediately the resulting effects (see section 4.1). Help is currently given
only as text, generated from slightly abstracted canned information structures. We
are planning to augment this by displaying key sequences and subgoals graphically.

5.1.1 A Sample Request to PASSIVIST

Assume the user wants to delete a line. He hits the help key, a help window paps up
and he is prompted fora question. 3

Question: How can I delete the next line?

Recognized words: delete next line
Ignored words: How, can, I, the?

The system indicates what it has understood. This is a common technique found in
human discourses. It allows to correct misconceptions and to build a model of the un
derstanding of the partner. In this case the user can see that the system's under
standing is limited.

The system analyzes the sentence, identifies the user's problem and computes a solu
tion by using primitives of the editor which are available to the user. The system
first gives a description in natura! language (using more or less canned text) and
then tells the user the actions which he has to take:

125

First, move the cursor to the desired line.

Command: cursor-down Key: down-arrow

The user hits the mentioned key and sees the cursor moving down one line while stay
ing in the same column.

The next step of the solution is rather complicated and is therefore explained by the
system. The help system has knowledge of certain stereotypical problems and knows
where it should give an explanation.

There is no primitive operation to delete a line as a whole. First you have
to make it empty and then delete the left or the right line delimiter.

In order to make a line empty, move to its beginning and then delete the rest
of the line.

Command: set-cursor-to-beginning-of-line Key: ·A

·A means hold down the CTRL key, hit the A key and release the CTRL key.

It is assumed that the user is a beginner which has no experience with computer key
boards. Therefore, for the first two times CTRL-keys are explained.

When the user hits AA the system explains the next step which is to remove the rest
of the line.

Command: rubout-line-right Key: ·K

·K means hold down the CTRL key, hit the K key and release the CTRL key.

The user hits AK and the line becomes empty. The last step is to remove one of the
line delimiters.

Command: rubout-line-right Key: ·K

The command rubout-line-right with the cursor at the end of the line merges
the current with the following line. This is used to delete the empty current
line.

5.1.2 Implementation

PASSIVIST is implemented in OPS5 (Forgy 81). OPS5 is an interpreter for production
systems which has been used in building expert systems.

Flexible parsing using OPS5 is achieved by a rule based bottom up method. The con
sistent structure of the system as a set of productions and a common werking memory
allows the use of the same knowledge in several stages of the solution process. For
example, knowledge about the state of the editor is not only used to selecta pos
sible solution for the user's problem but also to aid to disambiguate the user's ut
terance.

The german word 'letzt' may mean the 'previous' as well as 'the last in a region'.
In the phrase

die letzte zeile (the last line)

with the cursor being at the beginning of the editing buffer it is clear that the
user means the last line of the buffer.

126

Both the model of the user and the model of the editor state are represented as a set
of clauses in the werking memory of the production system; examples are

a) the system's model of the user (the number indicates the frequency how of
ten the concept was explained to the user): •

(User KnowsNotationOfKeySequences 2)
(User KnowsNotationOfCtrlKeys 1)

b) the system's model of the editor state:

(Cursor Aword:
ABeginningOfLine:
AEndOfLine:

at-beg inning
t
nil

AinFirstLine: nil
AinLastLine: t
ABeginningOfBuffer: nil
AEndOfBuffer: nil)

To answer a question of the user the system has to do the following:

1. build a model of the editor state
2. read and scan the question
3. parse the question into an internal representation of the user's goals
4. compute solution
5. present and explain solution

The following rule represents the systems knowledge about deleting the end of a line.
If there is a goal matching the condition part (the two clauses labeled <goal> and
<region>) and the cursor is not at the end of a line (otherwise another rule
triggers) the system proposes the command rubout-line-right.

(production DeleteEndOfLine
{<goal> (Goal delete <side>
{<region> (Side <side> APart:

(Cursor AEndOfLine:
-->

(remove <goal> <region>)

A Act i ve : t) }
end AObject: line)}
nil)

(make Goal issueCommand rubout-line-right AActive: t))

Sometimes there are better solutions than those found by the system. If there is only
a word or a single character between the cursor and the end of the line, other com
mands (rubout-word-right, rubout-character-right) can be used. The system needs a
metric to choose an optima! solution (see section 3.2).

5.2 ACTIVIST: an example for an active help system

ACTIVIST (Schwab 84) is an active help system that pays attention to suboptimal user
behaviour. It is implemented in FranzLisp and the object-oriented knowledge represen
tation language OBJTALK (Laubsch, Rathke 83).

A user action is considered optima! if it is done with a minimum number of
keystrokes. The help system can deal with two different kinds of suboptimal be
haviour:

1. the user does not know a complex command and uses suboptimal commands to
reach a goal (e.g. he deletes a string character by character instead of
word by word).

127

2. the user knows the complex command but does not use the minimal key se
quence to issue the command (e.g. he types the command name instead of
hitting the corresponding function key4

).

Like a human observer the help system has four main tasks:

1. to recognize what the user is doing or wants to do.

2. to evaluate how the user tries to achieve his goal.

3. to construct a model of the user based on the results of the evaluation
task.

4. to decide (dependent on the information in the model) when to interrupt
and in which way (tutorial invention).

In ACTIVIST the recognition and evaluation task is delegated to 20 different plan
specialists. Each one recognizes and evaluates one plan of the problem domain. Such
plans are for example "deletion of the next word", "positioning to the end of line",
etc ••

A plan specialist consists of:

1. an automaten, which matches all the different ways to achieve the plan
using the functionality of the editor. Each automaten in the system is in
dependant. The results of a match are the used editor commands and the
used keys to trigger these commands.

2. an expert which knows the optimal plan including the best editor commands
and the minimal key sequence for these commands.

5.2.1 Recognition Task

All automata are active and try to recognize their plans simultaneously. An editor
command issued by the user causes a state transition in every automaten. The input
for the automata is the command and the buffer state after execution of the command.
The buffer state is defined by the position of the cursor with respect to words,
lines and the buffer as a whole.

The automaten in Figure 5-1 can recognize the plan "delete the left part of the cur
rent word".

Initially the automaten is in one of the states START and WAIT .

* START: the preconditions for the plan are satisfied. In this case the cur
sor must be in the middle of a word (i.e. the onw predicate is true).

* WAIT: the plan cannot be immediately executed. The cursor is not at a
word.

The transit ion WAIT --> START ini tiates the START-ACTION. The internal memory of
used commands and keystrokes is initialized. While the user executes the plan the
automaten fellows the solid lines and records the used commands and keystrokes. The
automaten action MATCH-ALL means that the plan is completely recognized and the
evaluation task is initiated. Fora command which is not part of the plan a default
transition (dashed line) leads the automaten to one of the initial states (only
depending on the buffer state).

(cubout-cb-l•ft. onwJ

(,;1H • o r - l e ft an w)

128

(n1bout-cb-l•ft -om• bow MTCB- ALL)
(rubout--word- lett - anw l>ow NATCB-ALLJ

(cur• or - le[t -om, bo" J
(vord- hft -onw bow)

Tn n• l tl on, (~d butter .sU t eAl1fOIATOIIII\CTIOll'J

•· . > def ault t ransi t ton

• ean• cu r •or on a word
11ean1 eur• or no t on a word
••an• c ursor at t he be9 lnnln9 of a wo rd
• a tche • • l l

(rubout-r~lon -om, bow NATCB-iU.l,J

Figure 5-1: Automaten: rubout word left

5.2.2 Evaluation Task

Whenever a plan is recognized by the associated automaten the result of the recog
nition process is compared with the stored best solution for this plan. Other com
mands than the proposed ones are considered as a bad solution if the user needs more
keystrokes than for the stored solution (e.g. if a word consists exactly of one
character the proposed command rubout-word is not better than rubout-character).

In case he uses the recommended commands his action will only be evaluated as good if
he also uses the minimal key sequence.

5.2.3 Modeling the user in ACTIVIST

For each plan there is a knowledge structure which models the user and which contains
the following slots:

* plan-executed is the number how often the plan was done by the user (in
any way).

* good-done shows how often the plan was done with the optimal commands and
the minimal key sequence.

* wrong-command-used sho ws how a ften a wrong c ommand was used when the use
of the proposed command would have reduced the number of pressed keys.
keysl counts the unneces s ary key s.

129

" wrong-keys-used shows how aften the proposed commands were used but not
with the minimal key sequence. Here keys2 counts the unnecessary keys.

"messages-to-user shows how aften a message concerning this plan was given
to the user.

5.2.4 Help strategy

The help strategy of ACTIVIST is variable in the way that all limits are changeable
to experiment with different tutorial strategies.

The output of help messages is based on the following global strategy:

"the time between two messages shall be at least min-message-delay seconds
to prevent information overflow . Fora beginner it can be very frustrating
to be continuously criticized.

"a message concerning a special plan is given only immediately after the
plan was done wrong - not at a later time.

" the message concerning the same error will only be given max-messages
times to be non-intrusive and to accept that the user wants to do some
thing in his way.

The help activity shall be concentrated more on essential than sporadical errors.
Therefore criteria to give a message to the user concerning a special plan are:

1. a plan was done at least wrong-command-limit times with the wrong commands
and the number of unnecessary keys is greater than keysl-limit or

2. the proposed commands are triggered at least wrong-command-limit in a sub
optimal way and the number of unnecessary keys is greater than keys2-
limit.

A plan which was executed good-used-limit times in the optima! way will not be
watched any more. The help system assumes that the user is familiar with this fea
ture.

6. FUTURE RESEARCH

Our genera! research goals to improve human-computer communication with knowledge
based systems have shown that user-support systems in genera! and help systems
specifically are of crucial importance to the success of computer-based systems. Many
interesting questions have come up and we will mention the most important ones.

In realistic applications the number of possible user intentions and actions which
can be watched simultaneously will quickly reach the limit of the available computa
tional power. Similary toa human tutor the help system is unable to watch all plans
simultaneously; therefore it is necessary to concentrate on some plans. Relevant
criteria can be based on the following:

1. A plan which was executed in the optima! way several times by the user
need not to be observed any more.

2. Very complex plans are not relevant fora novice user.

3. The user can indicate his insecurity in a special domain by questions to
the passive help system; these plans can then be observed in detail.

130

4. The user can decide which plans shall be watched.

Currently our systems work primarily bottom- up, based on data-driven observation of
the user behavior. Model-driven predictions (based on a diagnostic model of the most
common problems which users have) should be integrated into our system and they could
be used to focus the attention of our help systems .

Help systems are currently still constructed as addons to existing systems. Our long
ranging vision of how computer systems should be developed is not to write code, but
to construct rich knowledge-structures from which we can generate arbitrary projec
tions being used as code, as documentation or as help.

Instead of providing good help systems it may be more fruitful to try to make systems
so transparent and so suggestive that there is no need for help at all (e.g. the use
of the mouse in our systems has greatly reduced the complexity of many system com
ponents; see figure 4-1).

For help systems to be truly useful, the following conditions must hold: the amount
to build them must be feasible (e.g. we need support for knowledge acquisition, con
sistency maintenance, etc.) and the help system itself must be easy to use.

FOOTNOTES

In the remaining part of the paper we will use the prunoun "he"
notation fora user.
The command will delete all files in the directory.
The user input is underlined; system output is in italics.
In BISY a command can be bound toa function key.

REFERENCES

as a generic

Bauer, J. (1984). BISY. A Window-Based Screen-Oriented Editor, embedded in ObjTalk
and FranzLisp. Institutsbericht, Project INFORM, Institut fUr Informatik,
Universität Stuttgart.

Burton, R.R., Brown, J.S. (1976). A tutoring and student modeling paradigm for gam
ing environments. Proceedings for the Symposion on Computer Science and Educa
tion. Anaheim, California.

Finin, T.W. (1983). Providing Help and Advice in Task Oriented Systems. Proceedings
of the Eighth IJCAI.

Fischer, G. (1981). Computational Models of Skill Acquisition Processes. 3rd World
Conference on Computers and Education. R. Lewis, D. Tagg (eds). Lausanne.

Fischer, G. (1983). Form und Function von Modellen in Kommunikationsprozessen.
Psychologie der Computerbenutzung. H. Schauer, M.J. Tauber (eds). Oldenbourg,
Wien.

Fischer, G., Schneider, M. (1984). Knowledge-based Communication Processes in
Software Engineering. Proceedings of the 7th International Conference on
Software Engineering. Orlando, Florida.

Forgy, C.L. (1981). OPSS User's Manual. Technical Reports CS-81-135, CMU.
Laubsch, J., Rathke, C. (1983). OBJTALK: Eine Erweiterung von LISP zum objektorien

tierten Programmieren. Objektorientierte Software- und Hardwarearchitekturen. H.
Stoyen, H. Wedekind (eds). Stuttgart.

Lemke, A. (1984). PASSIVIST: Ein passives, natürlichsprachliches Hilfesystem fUr den
bildschirmorientierten Editor BISY. Diplomarbeit Nr. 293. Institut für Informa
tik, Universität Stuttgart.

131

Lemke, A., Schwab, T. (1983). DOXY: Computergestützte Dokumentationssysteme. Stu
dienarbeit Nr. 338. Institut für Informatik, Universität Stuttgart.

Nieper, tl. (1983). KÄSTLi: Ein graphischer Editor für LISP-Datenstrukturen. Stu
dienarbeit Nr. 347. Institut für Informatik, Universität Stuttgart.

- Norman, D.A. (1982). Five Papers on Human-Machine Interaction. CHIP Report 112.
University of California, San Diego.

Rich, E. (1979). Building and Exploiting User Models. Ph.D. Thesis. Carnegi~-Mellon
University.

Schwab, TI1. (1984). ACTIVIST: Ein aktives Hilfesystem für den bildschirmorientierten
Editor BISY. Diplomarbeit. Institut für Informatik, Universität Stuttgart.

Wilenksky, R. (1983). Talking to Unix in English: An Overview of an On-line UNIX
Consultant. Technical Report. Division of Computer Science, University of Cali
fornia, Berkeley.

FATAL ERROR IN PASS ZERO: HOW NOT TO CONFUSE
NOVICES

Benedict du Boulay*, Ian Matthew+

*Cognitive Studies Programme, University of Sussex
+Department of Computing Science, University of Aberdeen

United Kingdom

ALL novice programmers find that their ini ~al programs are rejected by the compiler
in a flurry of incomprehensible error messages. Some messages are even hostile
(e.g. fatal error in pass zero) and Leave the novice sadder and certainly no wiser.
The quality of error messages is usually the Loser when the compiler writer attempts
to balance conflicting design constraints such as size, speed, quality of target
code and utility of use by competent programmers.

We believe that novices' programs should be passed through a series of Checkers
which are designed to trap and comment on the particular kinds of errors made by
them. Such systems may have to make several passes through the program, even to
provide an apposi te comment on a syntactic error. For Logic checking such systems
will need access toa description (in some form) of what the novice's program is
supposed ro do. Only when a novice's program passes through all the Checkers
successfully should i t be submi tted to the standard compiler.

This paper surveys existing attempts to build "intelligent" compilers which are
considerate of novices' difficulties. It then describes our own progress towards
the construction of program Checkers for use by undergraduates Learning Pascal.

1. INTRODUCTION

Pascal is widely used in the ini tial teaching of computing science in universi ties.
Despite its many good qualities, i t has a number of drawbacks as a first programming
Language, over and above specific technical ambiguities and deficiencies which do
not concern us here, see e.g. Welsh et al. (1977). The main difficulties are the
Large amount of detail which has to be mastered to make even a simple first program
work, the Lack of debugging facilities so that a student has to Laboriously insert
and La ter remove "wri te" statements to produce a trace and the fac t tha t the
Language is compiled rather than interpreted which makes meaningful error reporting
more difficult. These difficulties mean that special efforts are needed to set up
a programming environment based on Pascal Cor another similar Language) which is
properly tuned to the needs of novices.

The student's crucial experience of computing occurs when she first sits at a
terminal and, having mastered the Login sequence and the editor, attempts to compile
her first Pascal program. The result is usually predictable enough - a screenful of
technical mumbo-jumbo whose upshot is that the compiler cannot complete i ts task. A
compiler which we have used wi th first year students reacts (mea culpa) to very
poorly constructed programs wi th "Fa tal error in pass zero". Every year i t is
necessary ro explain this message to the students who find i t thoroughly
disconcerting. They wonder what 'pass zero' is and why it has a 'fatal' error, how
fatal is 'fatal' and what should they do next. Of course the compiler also emits
more specific messages but these are of ten ei ther unintelligible, or worse,
posi tively misleading. Some nice examples of the gene ral problem wi th compi Ler
error messages in Pascal are given by Brown (1983).

133

Why cannot these messages be made clearer, Less confusing and more accurate? If it
were simply a matter of adjusting the wording there would be no problem. The
central issue is that most compilers are built for one purpose but are of ten used
for another. They are designed to produce efficient object code in an efficient
manner and to emi t error messages only as a by-product of this process. This is
exactly what is needed by the experienced or semi-experienced programmer who can
cope wi th, and of ten welcomes, terse diagnostics. For the novice programmer the
emphasis is back to front. As far as she is concerned the primary output of the
compiler consists of the error messages, and the object code is of only secondary
importance. A novice is not usually wri ting a program because she is interested in
the task that i t does but because she is Learning about the Language and its
faci L i ties. For her the compi Ler is a teaching device which ideally should be
producing a helpful diagnosis of what is wrong wi th her program.

Many students are qui te unable to relate the messages from the compiler to mis takes
which they have made. This arises partly because of their Lack of knowledge and
partly because the messages themselves of ten focus on the wrong issue. For example,
if a student fails to close off a comment properly early on in a program, many
compilers will complain only when they reach the end of the program about still
being inside a comment (at best) or report something Like "unexpected end of program
encountered". In both cases this focuses attention at the end of the program rather
than on the of fendi ng commen t. Wha t the novice needs to know is tha t the commen t
which started on Line 5, say, was not properly closed off because she typed "*)" or
"]", say, instead of "*)"or"}" at the end of that Line.

Now clearly it is foolish to expect an all-purpose bug detector and analyser, but
there are a great number of errors at the Lexical, syntactic, semantic and even
Logical Level that are amenable to some form of automatic analysis and report, so
making the novice very much more able to proceed without involving outside help.

The syntactic analysis stage of compiling can be carried out rapidly and efficiently
in a single scan of the program tex t wi th very L i ttle Lookahead. A fai Lure to par se
at a point is usually reported as an error at that point. Error recovery techniques
are employed to enable the compiler to continue its analysis past this point, often
achieved by jumping to the next "safe" place in the program and continuing from
there. It is usually thought desirable to detect and report as many of the errors
as possible on each call of the compiler. This is not necessarily the best policy
wi th novices , especially werking at vdu terminals, because there is of ten too much
information on the screen for them to cope wi th. Our own informal observation
indicates that novices of ten deal only wi th first one or two errors, moving the
ether error messages off the se reen in the process, and then re-compi Le to re
genera te the remaining error messages whi ch are dealt wi th in a simi Lar fashion.

There is a sharp contrast between determining the point at which the parse fails and
the cause of the error •• By "eau se" we mean the mi sma tch be tween wha t the novice
typed and what she intended. Very of ten a mistake or mis-typing early in a program
is not actually illegal at the point at which it occurs and its effect Lurks
insidiously to cause a parse failure much Later on, e.g. ommi tting to declare a
variable. A tutor shown a program which wi LL not compile will try to explain what
the student did wrong to cause the failure. Doing this requires a knowledge of the
student's intention and her Likely state of knowledge. For example, an appropriate
comment for the error

fori :=1 to 10 do

concerns the Lack of a space between the "for" and the "i", but i t is an unusual
compiler which will make such an observa tien. For example, one compiler gives the
following for the above error:

134

errors in pascal program
6 illegal symbol

4 4
59 error in variable

5
103 identifier is not of appropriate class

5
104 identifier not declared

4 5

One of the issues here is that making sense of the error requires one to Look a
L i ttle beyond the point where the parse fai Ls. I t then becomes c Lear tha t a space
has been missed, rather than, as the above compiler assumes, the earlier omission of
a declaration of variable "fori". In general searching for the cause of an error
may require multiple scans of the program text in an attempt to determine a best-fit
diagnosis, may require a greater degree of Lookahead than normal and will require
knowledge of common mistakes made by novices, such as in (Ripley & Druseikis, 1978;
Kahney & Eisenstadt, 1982; Soloway & Ehrlich, 1982) and, in the case of logical
mistakes, information about what the program was intended to do.

Because compilers are not well sui ted to the task of reporting errors in a
meaningful way, we argue that for novices error checking should be undertaken by a
system separate from the compiler. Only if the error checker fails to detect any
errors should the novice then submit the program toa compiler for translation into
object code. The advantage of this method is that it allows each kind of tool to be
optimised for its particular job, obviates the need to tinker wi th existing
compilers and provides a gentle transi tion to more standard werking me thods for the
persen who finds the separate error checking phase redundant.

An alternative method involves the use of a structure editor, e.g. the Cornell
Program Synthesizer CTei telbaum & Reps, 1981). Such systems emphasise that a
program is a structure rather than just a piece of text by only accepting, and even
prompting for, syntactically legal code. The advantage is that the novice is
alerted at the earliest possible moment about syntactic and lexical errors. The
Cornell system also provides various debugging and tracing aids, allows partial
execution of incomplete programs and makes goed use of the terminal ·screen to make
i t a very powerful environment in which to develop programs. A disadvantage is that
jumping to conclusions immediately that a mistake is discovered can lead a system to
mis-diagnose wha t the novice in tended and so pos si b ly output an unhe lpfu l error
message. It is also unclear how well a novice who has learned on such a system will
transfer to a less well endowed programming environment. A related question
concerns the compara tive educa tional meri t of preventing the novice building a
syntactically illegal program as against explaining what is wrong if she does so.

Some people argue that providing more extensive error checking is a bad idea, that
novices shou ld be made to do more desk checki ng and tha t too ready access to
interactive terminals and intelligent aids leads to inefficient program
development. They recall their own hard apprenticeship - edi ting paper-tape by
hand, werking from binary core-dumps or resoldering the program C the reader can
supply her own favouri te example). There are two difficul ties wi th this argument.
First, old-fashioned methods of development e.g via batch or coding sheets made
learning harder because they made the wri te-test-debug cycle much slower so
delaying feedback to the learner. Second, novices of ten cannot desk check precisely
because they are novices and they need the error messages to tell them what is
wrong.

In the next section we describe various attempts that have been made to make the
learning process easier, concentrating mainly on systems for teaching programming
automatically. Thereafter we describe our own preliminary attempt at an error
checker for Pascal.

135

2. A TUTORIAL ENVIRONMENT FOR NOVICES

One method of helping the novice is to integrate the language, the teaching
documents, the tutorial help and all other aspects of the teaching environment.
Where the language i tself is not constrained by a Standard, changes can be made to
render it more easily learnable, by, for example, changing names of keywords, the
syntax or even i ts semantics to make the language conform to some overall teaching
view. The development of Logo at Edinburgh or Solo at the Open Universi ty are
examples of this all-embracing approach (du Boulay et al., 1981). While the Open
Universi ty solution (Eisenstadt, 1982), involving close analysis of students'
ex peri ences fo l lowed by revi si on of teaching ma teri als, teaching me thods and the
language is admirable, there is much less room for manoeuvre wi th Pascal.

Some people have advocated a completely automated system in the hope that each
learner would receive an individually tailored course of instruction. Several
systems, for a variety of languages and focussing on different aspects of the
programming process, have attempted to provide this. Koffman and Blount's (1975)
system, Malt, was able to generate problems and check student solutions for simple
assembly language programs. However their method of subdividing the problem into
small steps and then checking the student's solution for each step against all
possible (generated) solutions does not lend itself easily to high level languages
such as Pascal. One of the most versatile tutorial environments was BIP, designed
to teach Basic (Barr et al., 1976). It was able to give relatively meaningful error
messages, il lus tra te the action of a student's program pictorially, perform limi ted
checks on a student's answer and selecta subsequent problem for the student to
solve by reference toa student model, a task difficulty model and a teaching
strategy. Our preferance would be for more stringent automatic checks of the
student's program and more human involvement in the choice of what program the
student worked on. Indeed their own experiment demonstrated no particular advantage
for the individually chosen sequence of problems over a pre-set sequence chosen ~

suite a notional average student.

Both Gentner's (1979) system, Coach, to teach Flow, and Miller's (1978) system,
Spade, to teach Logo moni tored the student as she developed a program. Indeed the
former system attempted to understand the significance of every keystroke, including
mis-typings. This involved the hard problem of inferring the student's plan from an
incomplete and growing program, a problem which has to be faced by any checking
system which does not have the full text of the program available.

Some work has been done on detecting and repairing logical errors in student's
simple programs. Goldstein's (1975) system, Mycroft, could detect and repair
errors in Logo programs designed to produce line drawings. It made the program
conform toa set of assertions about the geometrie proper ties of the drawing i t was
supposed to produce. It was able to relate inconsistencies between a program and
the assertions via a theory of program planning and of errors in plans and so repair
the program. Using related methods, Lukey (1980) has shown how certain errors can
be eliminated from a Pascal program by sub-dividing the program into smaller
logical chunks. His system, Pudsy, was able to deal wi th various logical errors
which could be detected without reference toa specification for the program. It
was also able to derive assertions about a program and match these against a
specification, also represented as assertions. By detecting mis-matches and then
changing the program to eliminate them, it was able to remove further logical
errors.

By contrast, Adam and Laurent's (1980) system, Laura, worked not from a set of
assertions but from a specimen answer also expressed as a program. Having converted
both the specimen answer and the student's program into graphs, the system
successively transformed each graph without disturbing the overall effect of the
program i t represented. Eventually the two graphs could ei ther be shown to match or
their irreconcilable differences used to localise portions of the student's program

136

which probably contained errors. In some cases the system could pinpoint an error
exactly, such as the use of a constant of incorrect value. Both methods, i.e. using
assertions and werking from a specimen answer, have advantages especially where a
system is only intended to suggest plausible errors and is not expected to undertake
the error repairs for i tself.

MENO-II is a program currently under development which detects and comments on
novices' semantic (problem-independent) and Logical (problem-dependent) errors in
their Pascal programs (Soloway et al.,1982). It is used wi thin the context of a
programming course so i t is possible for the Tutors to provide i t wi th a
specification of the problems which the students are werking on.

The system works in two phases, first finding errors, then inferring possible
misconceptions underlying these errors. In the first phase the student's program is
parsed into a deep structure which represents the functional characteristics of the
program. Various statements wi thin this representation are annotated wi th tags
indicating their roles. For example, the statement

sum := sum + new;

is tagged wi th "running total assignment". A second Level of annota tien then occurs
in which the system attempts to add further tags indicating sub-plans Cor
"programming cliches"). Finally the system matches the fully annotated
representation against a taxonomy of known student planning errors, such as omi tting
an initialisation step or employing sub-plans in the wrong order. This taxonomy has
been derived from an extensive analysis of students' errors. The system then enters
its second phase where it attempts to pinpoint the misconception underlying each of
the errors detected. Each error is Linked toa set of possible misconceptions via a
newtwork. At present the system reports the error and also reports all the possible
misconceptions to the student. The next version of the system is intended to
question the student in an attempt to reduce the number of hypotheses about the
causes of the error.

The system has been tried wi th real s tudents bu t wi th mixed success. One di fficul ty
was the enormous range of errors and misconceptions associated wi th even a single
program, wi th the result that their system could only successfully recognise a small
proportion of the errors which occurred. Where the novice made many errors the
system had no way to integrate i ts knowledge of errors into a more global view so
that it could report sensibly on a student's failure to coordinate sub-plans in
widely separated parts of the program. Nevertheless MENO-II stands as a most
interesting example of the incorporation of empirical data into a program for use by
novices.

3. A PROTOTYPE ERROR CHECKER

As an ini tial attempt at exploring some of the issues involved, we have implemented
a system designed to comment on certain commonly occurring errors. We present this
sys tem not as a mode L of how thi s task shou Ld be ca rri ed out bu t to under Line our
argument that the task should be done. The program is implemented in Prolog and
works, at present, only for a tiny subset of Pascal. This includes integer,
boolean and array types, for Loops, condi tionals, wri te statements and assignments.
It contains five sub-systems, concerned wi th Lexical, syntactic, semantic and
Logical analysis respecively, plus a simple trace mechanism. Only the syntactic
and semantic sub-systems are described in this paper.

The sys tem reports on a si ng Le error at a time and the novice is expec ted to put
that error right before the analysis proceeds any further. This might be regarded
as a slightly inefficient way to proceed but it minimises the Lead on the novice who

137

can then deal wi th each error as i t comes, as in an interpreted Language.

3.1 Syn tac tic Leve L

The parser is implemented using two sets of rules. One embodies the correct syntax
of Pascal. The ether, a set of "mal-rules", corresponds to particular syntactic
mis takes ·commi tted by novices e.g. confusing "=" (equal i ty) wi th ":=" (assignment)
or (sub range) wi th "to" (keyword) as shown in the fol lowi ng error mes sage
produced by our system. Certainly the wording of the message i tself can be improved
to simpl ify the Language used and give a reference to a more sui tab Le tex t. However
i t is the focus of the message rather than its actual wording which is the main
issue here:

Thi s mes sage refers to the token
contained in file test.p •

2 var i integer;
3 begin
4 for i = 1 to 5 do
5 wri te(i)
6 end.

on Line 4 of the program

This token is the equality operator. It Looks as if you have
confused i t wi th the assignment operator ":=" which was expected
at this point in the for statement between the initial value
expression and the control variable.
Ref: Pascal User Manual & . Report 2nd Ed. p23 K. Jensen, N.
Wi r th.

The system is implemented using the "grammar-rule" formalism in Prolog (Clocksin &
Mellish, 1981). In this representation each statement in the grammar of Pascal is
translated into an equivalent Prolog rule. The collection of rules consti tute a
Prolog program which then runs as a parser. It works top-down, Left to right,
backtracking when a wrong choice of which rule to apply has been made. Mal-rules
can be represented the same way and incorporated into the parser, wi th the proviso
that the system attempts a parse using the legal rules before trying any of the
mal-rules appropriate at that point. One advantage of this formalism is that it
allows the system to grow in a reasonably modular way, adding new mal-rules as
developed.

/* SOME RULES ABOUT FOR STATEMENTS *f

1*1*1 for statement -->
[Tfor'],
for _sta t_body.

1*2*1 for stat body -->
[Controlvar], { variable(Controlvar) } ,
for _sta t_body1,

1*3*1 for stat body1 ->
[T:=•J;
for _sta t_body2.

1*4*1 for _stat_ body2 ->

expression,
tor _sta t_body3.

1*5*1 for stat body3 ->
[T to']~
tor _sta t_body4.

1*6*1 tor stat body3 -->
[Tdownto'J,
for _sta t_body4.

138

I* SOME MAL-RULES ABOUT FOR STATEMENTS *I

1*7*1 for stat body -->
[XJ, - { (res_wrd(X), err_message(e49,X)) } •

-> l*B*I for stat body1
[T:,, ,-;;-,], { err_message(eSS,':') } •

1*9*1 for stat body1 -->
cT=•J,- { err_message(e56,'=')}

In the above example the code has been simpl ified. In particular the arguments to
each ru Le have been omi tted. These are used to bui Ld up a par se- tree duri ng the
parsing process. Rules 1 to 6 are some of the correct rules about 'tor' statements.
For example, rule 1 says that the statement must start with 'for'. Rule 2 says that
this must be tollowed by a variable. Rules 5 and 6 indicate that ei ther 'to' or
'downto' can be used. Rules 7 to 9 are just 3 of the many mal-rules in the system.
Rule 8 Looks for the use of ':' and '=' separated by a space, instead of ':='. Rule
9 Looks for '=' instead of ':=' When a mal-rule fires i t triggers off an error
message and halts the parser.

In principle the system could attempt an automatic error repair. This is nota good
idea from an educa ti ona L point of view because i t does not bri ng the mis take to the
attention of the Learner wi th the same force. Also if the system makes the wrong
assumption about what was intended and carries out an inappropriate repair it may
make the si tuation even more confusing tor the novice.

There are two kinds of syntactic error. Those, as above, that have been
specifically anticipated and can be recognised by one of the mal-rules, and those
that have not. In the Latter case the system, at present, comments in a similar
manner to other compilers concerning the point at which the error occurred, what
token was expec ted and wha t token found. In a ttemp ti ng to par se a program, the
system first tries all relevant rules from the correct set. Only if they fail does
i t try the relevant mal-rules. The re is thus a di fference in emphasis from
standard compiling techniques in that the system expects and is designed to cope
wi th the kind of mis takes which novices make. There are some general purpose mal
rules which deal wi th mis-spel led keywords, omi tted spaces or semi-colons, as
needed, for instance, in the "fori" example given earlier.

The system sometimes postpones judgement about an error until more information is
available rather than, say, dealing with the error at the Lexical Level even though
a violation can be detected at this Level. One case concerns the use of comments
within a program. Misuse of the comment brackets can cause all kinds of difficulty
tor the novice, as pointed out earlier. Stripping out comments and checking their
Legality at the Lexical Level can make it hard tor the system to make an intelligent
assessment abou t wha t the student in tended, and hence wha t to say to her.

For example, the inadvertent mistyping of "{" for "[" in an array declaration will
cause a L L the rest of the program up to the nex t ins tance of "}", i f any, to be

139

trea ted as a commen t.

var myarray array{1 •• 10J of integer;

This kind of error can be very difficult to spot especially when the error messages
point at it only indirectly. By Looking at this error in a syntactic rather than a
Lexical context the system can make a better guess at what has gone wrong. Both
brackets are on the same key on our terminals, but on some one holds down SHIFT to
ge t "{" and ethers one holds down SHIFT to ge t "[".

3. 2 Sem anti c Leve L

Semantic checks are performed on a parsed struc ture handed over by the syntactic
analyser. Only when no further syntactic errors are detected is the semantic
analysis stage started. Various checks are carried out including type checks,
checks that a Loop is executed at Least once and that variables are properly
initialised before being used (i.e. the user is warned against using default
values). Here semantic checks include all these checks that can be carried out
without know Ledge of the parti cu Lar purpose of the program. For example,
attempting to read from a file before "reseting" i t would count as such an error.
At present, because of the tiny subset of Pascal used these checks are carried out
on the basis of a stat.ic analysis of the program.

Both error messages and warnings are output. A warning concerns something which
though not actually incorrect (at the given Level) may indicate a misapprehension on
the part of the novice. A standard format it used for error messages wh i ch says
what is wrong, shows the section of program containing the error, explains what the
novice may have forgotten or been trying to do and points to some auxi L iary reading.
The following is an example of warning abou t the use of a "for" Loop.

Thi s mes sage refers to the i ni ti a Lisa ti on of the con trol
variable in the for statement which starts on Line 6 and ends on
Line 7 of the program in file prop.p.

4 begin
5 i := 1 • ,
6 for i := 5 down to do
7 wri teln(i)
8 end.

The control variable for this for statement has been used in the
final value expression of the same statement. This can cause
unpredictable results and was probably not intended.

The problem here is that different compilers treat the ini tialisation of "i" in the
"for" Loop differently. The effect is that the Loop may either print out 5,4,3,2,1,
one number on each Line or it may simply print out 5. The novice needs to be warned
abou t the danger.

Misunderstanding the meaning of certain symbols can Lead the novice to wri te
syntactically Legal but nonsensical code e.g.

for := 1 to 10 do;
myarray[iJ := O;

140

The intention, partly indicated by the indentation - a factor deliberately ignored
by most compilers, was to ini tialise ten elements of "myarray" to zero. The effect
of the ";" af ter the "do" is to produce ten i terations through a null Loop followed
by an ini tial i sa tien of only the tenth element of the array.

4. CONCLUSION

The program implemented so far is simply a small-scale prototype for a much more
ambitieus system which will include extensive testing of the Logic of the novices
program against what her tutor wanted. It will also provide a system for tracing
and single stepping through a program to assist debugging. At present these sub
systems are implemented only in a most rudimentary form.

As Brown (1983) points out, checking a program at the Lexical, syntactic and
semantic Levels breaks no new computing ground. Part of the difficulty in the past
has been that these checks, such as they are, have been regarded as part of the more
gene ral effort of bui Lding a compi Ler. Because the compi Ler writer is trying to
satisfy a number of conlicting requirements, there has been a tendency to downgrade
the importance of goed error messages. Also the need to spot an error at the
earliest possible moment makes it hard for the system to reach an intelligent
assessment of what the user might have intended and, hence, of what she ought to be
told. We believe that novices and experts will be served best, not by trying to
make compilers werk effectively for bath groups by radically improving the nature of
their error reporting but by building special purpose error checkers for use by
novices which are informed about the kind of mistakes which they make.

REFERENCES

Adam, A. & Laurent, J. (1980), A system to debug student programs, Artificial
Intelligence, 15, 75-122.

Barr, A., Beard, M., Atkinson, R.C. (1976), The computer as tutorial Laboratory: the
Stanford BIP project, International Journal Man-Machine Studies, 8, 567-595.

Brown, P.J. (1983), Error messages: the neglected area of the man/machine interface,
Communi ca tiens of the ACM, 26, 4, 246-249.

Clocksin, W., & Mellish, C. (1981), Programming in Prolog. Springer-Verlag, Berlin.

du Boulay, J.B.H., O'Shea, T., Monk, J. (1981), The black box inside the glass box,
International Journal Man-Machine Studies, 14, 237-249.

Eisenstadt, M. (1982), Design features of a friendly software environment for novice
programmers, Human Cognition Research Laboratory Technical Report No. 3, Open
Universi ty.

Gentner, D.R. (1979), Towards an intelligent computer tutor, Procedures tor
Instructional Systems Development, Academie Press, New York.

Goldstein, I.P. (1975), Summary of Mycroft: a system tor understanding simple
picture programs, Artificial Intelligence, 6, 249-288.

Welsh, J., Sneeringer, W.J. & Hoare, C.A.R. (1977), Ambiguities and insecurities in
Pascal, Software-Practice and Experience, 7, 685-696.

141

Kahney, H., Eisenstadt, M. (1982), Programmers' mental models of their programming
tasks, Proceedings of the conference of the Cogni tive Science Society.

Koffman, E.B. & Blount, S.E. (1975), Artificial intelligence and
programming in CAI, Artificial Intelligence, 6, 215-234.

au toma tic

Lukey F.J. (1980), Understanding and debugging programs, International Journal Man
Machine Studies, 12, 189-202.

Miller, M.L. (1978), A structured planning and debugging environment for elementary
programming, International Journal Man-Machine Studies, 11, 79-95.

Ripley, G.D. & Druseikis, F.C. (1978), A statistical analysis of syntax errors,
Computer Languages, 3, 227-240.

Soloway, E., Ehrlich, K. (1982), Taci t programming knowledge, Proceedings of the
conference of the Cogni tive Science Society.

Soloway, E., Rubin, E., Woolf, B., Sonar, J., Johnson, W. L. (1982), MENO-II: An
AI-Based programming Tutor, Research Report No. 258, Department of Computer
Science, Yale Universi ty.

lei telbaum, T., & Reps, T. (1981), The Cornell program synthesiser: a syntax
directed programming environment, Communications of the ACM, 24, 9, 563-573.

NOVICES AND LEARNING

ON THE Il1PLICATIONS OF lJSERS' f'RIOR Kt'IOWLEDGE FOR
LllJMA!H.;OMPllTER IN IERACT10N

Yvonne Waern

University of Stockholm
Sweden

TI1is paper analyses the situation in whicn a beginning computec user tries to handle
a computer system by only ilaving had a brief period of instruction and manned with a
manual. Toe sicuation is analysed as a problem solving situation, in which knowlcdge
about how similar tasks are handled outside of the system plays a great cole. lt is
suggested tnat the following situations -..ill lead to slow learning: when the problem
space is great, wnen necessary methods are difficult to access, when prior methods
are inadequate and streng, wnen prior models are inadequate, and when the JJroblem
formulation is misleading. It is furtner suggested that the following maj be
learned in this situation: situation specific goal-condition-method rules, higher
order rules, problem schemata, and causal explanations.

Empirical observation by means of tllink aloud protocols and registeri,1g of actual
interactions are presented. îhese show that difficulties encountered by beginning
users may be interpreted as suggested above. As to the learning content, the obser
vations suggest chat beginning users primarily learn situation specific goal
condition-method rules. Tney may furthermore redefine old or create new problem
schemata. Higner order rules and causal explanations were not evident in the data
collected.

l, INTRODUCTION

Tne present development of computer sydtems creates a particular learning sicuation.
Computer systems are, toa great extent, developed to assist people in performing
their ordinary tasks. Office automation systems are developed for office work, com
puter aided engineering systems are developed for engineers, etc. Tuis means tnat
people who are experts in performing a particular tasK will have co learn new ways
of performing that tasK. Toe learning situation can thus be characterised as a
transfer situation: prior knowledge of the task and its corresponding metnods will
be transferred to the computer situation. The question to be posed is thus, how
differences in prior knowledge will affect learning computerised tasks. 1 will
present an analysis of this problem as well as some examples of observed learning
situations.

I wil l first focus on the si tuatio11 in which a persen is required to learu the
methods relevant to a new computer system by interactions with the system. Of
course, the persen nas to know at least some of the appropriate commands and must
have a manual available. Tnis is a ratner common situation. After a brief introduc
tion toa system, the user will often have to explore the system alone. Supervisors
and computer experts are not always available. In this situation, the persen who is
going to try to work with the system can be regarded as a problem solver. He has a
goal to accomplisil and has a number of operations in mind which he would like the
system to perform but, since the system is new, the way to arrive at the goal is yet
unknown. However, the persen in mind has some knowledge about the way the task
should be performed, without the system. He knows which general strategy to apply to

145

different problems and also which particular methods should be used outside of the
sys tem. This knowledge can be termed knowledge of the "external" tas k. Tne sys tem' s
way to describe the task can be termed the "internal" task (Mor an, 1983). These two
tasks may be more or less overlapping. (This was not suggested by l1oran, but must
certainly be the case, see De Bachtin, 1984). However, the person in question has
to learn the internal task, irrespective of the way the external task is
represented.

The person's knowledge of the internal task is partial at the beginning of course.
Tne first step in the problem solving attempt consists of using these two sources of
knowledge - the external task knowledge and the internal task knowledge to con
struct a problem space (Newell & Simon, 1972). The more similar these two types of
knowledge are, the more the dC tual problem space will have in common wi th wel 1-,rnown
problem spaces which have been previously used. Although the problem space should
not be regarded as the person's conscious representation of tne problem, it v1ill
restrict the actual processes during problem solving by defining those representa
tions of concepts and objects and those operations upon these representacions whicn
are to be permitted (Newell, 1973).

Next, the ;ierson will start a searcn in the problem space. This means that different
operations will be performed on the actual symbols currently available, the results
evaluated, and new operations chosen. Tnis search will lead to some result (success
ful or not) as well as some representacion of the procedures used during the search.
In the situation analysed here, the representation will include procedures relevant
to the task (in the system) as well as ;irocedures which are important for handling
the system. This representation includes a "model of the task in the system" as well
as a "model of the system", from the person's point of view (Halasz & Moran, 1983).
If the task has been accomplished, the model can be cal led a "success" model. If the
person failed to perform the task, the model can be called a "failure" model. It
should be noted that these notions of "success" or "failure" models refer to the
learning of the system. It can be suggesced that when the system has been learned,
both successes and failures may be derived from the same model. During learning, a
simple failure model may be reflected in an utterance such as: "I thought tne system
v1ould react to my command in the following way... but it did not".

Failures will, of course, occur during a learning situation and will lead to renewed
attempts to attain the goal. In these renewed attempts, different changes can be
tried. These cnanges may reflect a failure model, or may be based on trial and
error. The re are changes which can ta,.<e place wi thin the same problem Spdce, by tak
inga new patn from a particular node, but there are also changes which redefine the
problem space itself. Such changes can take place by evoking new prior knowledge and
new methods with the same problem representation or by reinterpreting the problem.
The system model will be built up during these attempts to remediate errors as well
as d~ring the successful attempts.

An overvie·v1 of the different concepts presented here and their relation to the prob
lem situation and problem solution is presented in Figure 1. The figure is not res
tricted to computer wor·k. I shall try to hold on to generality as long as possible
concentrating on the particular problems concerning computer systems when they
arise.

lnitial problem

interpretation

Goal

146

Problem situation

Problem space

1
Search

1
Representation

ot process

Success model t----------

Figure 1 Same interactions between problem interpretation, yrior
knowledge and problem solving

I shall naw propose that some learning is derived fro& problem solving dttempts. (Of
course, learning wil! occur in several different conditions, of wnich learning by
e~perience is only one. I will however concentrate on learning by experience in this
report.) Going back to Figure l, it is possible to suggest that learning will be
quick or slow, depending upon the factors described in Table 1. (Of course, Table 1
snould be regarded as a simplification of the problem. There are certainly more
varieties in learning speed than quick or slow.)

I shall elaborate on Table 1. By "Size of problem space" is understood the total
space of possible operations, which may be performed in the situation known to the
problem solver. Ina computerised task this space includes the possible commands (or
menu choices) as well as the mental acts which may be performed in the situation,
such as inferences, decisions, combinations, comparison, planning, etc. It can be
said that the smaller the task and the more restricted the system, the smaller the
size of the problem space. Whether the user of the system finds a system useful or
not, will depend bath on ease with which he can learn to use it and on its func
tionality. lf the system performs the task in an easy way, the user will probably
find the system useful.

Size of problem space
Accessibility of necessary methods
Prior methods
Prior models
Problem interpretation

147

Learning rate
Quick

small
high

functional, strong
adequate
adequate

Slow

large
low

disfunctional, strong
nonadequate
misleading

Table 1 Factors which contribute to quick and slow learning
respectively

The second point in the table refers to tne accessibility of necessary methods. It
is self-evident that if the necessary methods are already known, the learning is
quick. We would not really refer to such a situation as a learning situation. How
ever, in a new situation several aspects and several methods will have to be
learned. The more already known the quicker the total learning. It can also be
said, that if old methods are similar to new ones, then learning will also be quick.
Amore detailed elaboration of the concept will make the statements less trivial. We
know that it may be easy to perform a new task, if only one single method has to be
learned. It is for instance, easy to learn to log into a system, as long as we do

not need to learn anything else. "Accessibility" can thus refer toa situation in
which a person can keep a method active in short-term memory as long as is needed to
execute it. We know that short-term memory is very restricted. Thus, a method which
contains several steps may exceed the capacity of short-term memory. Such a method
can then be regarded to be less accessible than a method which fits into short-term
memory as a whole. Also, the more new methods a persons !las to keep track of simul
taneously, tne greater the chance that short-term memory will get overloaded and
thus that some of the methods will not be readily accessible. When the methods are
al ready well-known, the person can be regarded to have "chunked" them into units,
thus saving space in short-term memory. This reasoning therefore implies that a
method that can totally be kept in short-term memory is the most accessible. Other
methods may vary in accessibility. The cause for this variation lies partially in
tue "size" of the method: the larger the method, the more to be stored out of
short-term memory (in long-term memory or in external memory). Part of tne variation
lies also in the time needed to access the rest of the method's parts (assuming that
one part resides in short-term memory), either from long-term memory or from exter
nal memory.

The third influential factor in the table refers to the effect of methods already
known and easily accessible. The actual situation may trigger an "old" method, which
is easily accessible but not functional in the new context. Tuis might be a situa
tion which is rather common in computerised work, particulariy in present day sys
tems, in which the · sys tem developers have tried to "simulate" the ordinary work
environment. Tuis strategy of system development might encourage the use of methods
which are no langer functional or are even disfunctional. The "strenger" these
methods are, the more time it will take to suppress or "unlearn" them. By "strong"
I mean their probability to get invoked in the particular situation. The "strength"
must be regarded to be relative, depending on the characteristics of the situation.

The next factor to be considered concerns the models used in the actual situation. I
use the term "model" here to refer to those aspects of the persen' s conception of
the task and system situation which will influence his initial representation of the
situation, or the prior knowledge which will be invoked, or the creation of the
problem space. Whereas it might be difficult to explain, why one model is influen
tial and anotner is not, it is easy to agree upon the fact that an adequate model is

148

helpful (Norman, 1982; Mayer, 1975, 19Jl), and an inadequate model is harmful
(Halasz & Moran, 1982). With the (admittedly vague) definition of the concept of
model used here, the model can be regarded as one of the most central components in
learning. I will therefore return to an analysis of the model somewhat later.

Tne last influential factor in Table 1 refers to the interpretation of the problem.
In the same way as a model, the interpretation will influence the prior knowledge
evoked as well as the problem space created. If the interpretation is misleading,
the problem solving will either fail or be inefficient. The effects of misleading
interpretations have primarily been pointed out by researchers within the gestalt
psychology tradition. Examples include, for instance, perceptual fixations such as
believing that the nine-point problem has to be solved within the square formed by
tne nine points or functional fixation such as not seeing that a pair of pliers may
fw1ction as a weight in the pendulum problem (Maier, 1931).

Tne next step in my analysis of problem solving and influential factors in learning
by experience, will be concerned with the question of what is learned, in particular
in a computer situation.

Since learning always refers toa change relative to something previously existing,
we can ask, what kinds of changes can be called "learning". There are several possi
ble changes, which all may be relevant. Learning is often seen as the addition of
new facts to old structures. Old structures may also be refined by, for instance,
new discriminations or reorganised by new generalisations. Yet another kind of
learning results in making procedures more efficient (Anderson, 1982). More effi
cient means that the procedures are compressed (so that they more easily fit into
short-term memory) and that their components can be performed in shorter time. Res-

tructuring changes, in which whole systems of thoughts have to be reconsidered can
also be referred to as learning.

Now, what about the content of learning? I will divide learning outcomes from
interactions with a computer system into four different categories: goal-condition
method rules, higher order rules, problem sche&ata and causal explanations. (It
should be noted that these categories do not exhaust the possible alternatives.
They represent a useful set of learning outcomes with which we can start to analyse
what is contained in the concept of "a model of a sys tem".)

It has been suggested by Card, Moran & Newell (1983) and Kieras & Polson (1982 a,b)
that learning a computerised sys tem includes learning produc tion rul es for perfor.n
ing tasks in the system. These production rules can have the following genera! form:

IF
AND
THEN

goal X
condition Y
per form act Z

I claim ~1at it is not the form of a production rule, per se, that is interesting
(production rules can be used to represent all kinds of learning), but the content
itself. In the first kind of learning outcome I will suggest, the production rules
learned are concerned witll the actual metllod to be used in an actual situation. I
will tnus call them "goal-condition-method rules". We can consider the rules as the
"atoms" upon which further learning is built. Such a rule would ,for example,
include information about the use of simple commands: "if you want the cursor to
move forwards and you already have some text written right of the cursor, then type
ctrl-f." I nave presented some analyses of requirements of different computerised
tasks in terms of goal-condition-method rul es elsewhere (Waern, 1984).

Tne second learning outcome I suggest is related to people's attempts to find regu
larities or construct structures. People try to induce higher-order rules from their
specific interactions with the system. Higher order rules concern, for instance,
generalisations. The user can reason that if "ctrl" in front of something refers to
a character and "meta" refers to a word, then "ctrl" may refer to small entities and
"meta" to big ones. The same difference could then apply to lines versus paragraphs.

l

149

It has been pointed out that users profit from such internal consistencies and t.~us
can be regarded to learn higher order rules (Barnard, Hammond & Morton, 1981, Reis
ner 1981 and Payne & Green, 1983). Higher order rules can also concern semantic
inferences. If a certain command includes an F and affects something going forward,
one might predict that there is a command called B which affects something 15oing
backwards.

The third learning outcome refers to the interpretation of the Jlroblem given. As we
all know, problem descriptions may vary, even though the method to solve the problem
is the same. It is evident that people can interpret a particular situation in terms
of the concepts relevant to this situation. Tne concept "schema" was suggested to
cover this assimilation of a particular piece of information to a more general
structure (Rumelhart & Ortony, 1978). When the situation contains a problem, it is
probable that persons learn to interpret that problem in terms of the general
methods used to solve problems of that kind (Kintsch & Greeno, 1982). In this case
we can say that people learn a "problem schema". Both the problems solved by SUJlport
of a computerised system and the problems caused by this system can be characterised
by more abstract schemata. Tne schema concept fits into the idea of a "model" very
-.,ell.

The fourth learning outcome to be suggested concerns different kinds of explana
tions. People try to explain the reasons why goal-condition-method rules or higher
level rules function as they do. People try to explain why errors have occurred. I
will call such explanations "causal explanations". A causal explanation is not
necessarily related to procedures, as the action rules and nigher-order rules are.
For instance, if errors occur when the user tyj)eS several commands in sequence very
quickly, a possible explanation is that the system cannot listen as fast as the user
types, or that the system is "busy" -.,orking with the first command, and cannot react
to the second until the first has been effectuated. This is an explanation which has
to do with the properties of the system (in this case inability to split attention).

It may be more difficult to come up with causal explanations than with the other
types of learning outcomes. The goal-condition-method rules were related to observ
able actions and outcomes, as were the higher order rules. The problem schemata were
based on the interpretation of problem in terms of possible methods, also an
activity based on observable outcomes. However, when trying to find a causal expla
nation, it is difficult to find an appropriate level of analysis, due to the mul
tilevel character of the computer system. The correct explanations of an error can
range from every-day arguments (such as the example above) to descriptions of system
design and program listings at hardware level. People cannot be expected to be able
to distinguish which level of error has occurred during their first encounters with
a particular computer system. Tne unassisted learner has no possibility (unless he
is well acquainted with computer systems) to decide, which levels are plausible, or
which explanations belong to which levels. Users with little computer knowledge
should try eitner low-level explanations in terms of goal-condition-method rules or
higher-order rules and when these fail, use causal explanations which are based upon
every-day reasoning. So for instance they can use different Kinds of analogies. The
analogy -.,i th human behaviour might be obvious (such as the attention explanation
suggested above), as well as analogies with other automata (for example "the com
puter can only do exactly what you tel1 it to do"). Other analogies might be more
task relevant, such as explaining a word processing system in the concepts used for
typewriters.

These different contents of learning can all be incorporated in the idea of a
"model" of the system. The model of a system will contain action rules as well as
higher level rules, problem schemata as well as causal explanations. Tnese rules,
schemata, and explanations will be related to successful as well as failing pro
cedures. In the model these different kinds of rules are also related to each other,
in smaller fragments or in larger structures, with smaller or larger inconsisten
cies. The model is succeedingly refined by comparing it to the actual task and sys
tem, and the model's inner structure.

150

Tne possibility of formin5 an appropriate model will depend upon the feedback given
by the computer system. Not only will the learner have to know that a particular
procedure succeeded or failed. He will also have to be able to reason about tne suc
cess or to diagnose the cause of the failure. Tuis reasoning or diagnosis may be
performed by contemplating goal-condition-method rules. However, efficient use of a
complex system can never be attained using these low-level rules because of the res
tricted memory capacities human beings have. The user will need appropriate schemata
as well as causal explanations, to access the low-level rules efficiently and to
diagnose unexpected errors. We know, that at present, the feedback from most com
puter systems is quite insufficient for users to form adequate problem schemata or
to arrive at causal explanations solely based on their interactions with the system.
Beginning users probably do not learn any schemata or causal explanations during
their unassisted encounters with systems. Instead, low level goal-condition-method
rules will be learned and possibly some higher level rules. A "model" of the system
which only contains these types of rules can be regarded to be rather superficial.

The analysis above is based on general psychological principles from human problem
solving and learning research, supplemented by a number of characteristics of a com
puterised task. My next step will be to explain how this analysis applies to a
series of observations made on beginning users in different computerised tasks. The
aim of this empirical part of the paper is not to test any hypotheses. lts main aim
is to illustrate the analysis proposed and to indicate some aspects which need more
attention.

2. MliTfülD

2.1. Subjects

Each subject was totally naive about the particular computer system
all subjects had some (although varied) knowledge about the task to
each observation, an attempt will be made to characterise the
Knowledge about the actual task.

2.2. Procedure

used. However,
be performed. in
subjects' prior

TI1e subjects were given a short introduction (spoken as well as written) on handling
the system. Tuis introduction was only meant to get them started, not to teach them
about the system in depth. The subjects were then asked to perform different tasks.
They always had a list of commands (or an overview of menu items) available. The
subjects were observed individually. In some tasks, they were asked to verbalise all
their thoughts concerned with sol ving the task. In other tasks, the time taken to
perform the task was registered. The actual interactions with the computer system
were also registered. The experimenter was passive, except when he asked the sub
jects to think aloud. The experimenter also intervened when the subject seemed to be
quite stuck and could not progress with a particular task.

151

2.3. Tasks

The following tasks will be presented and analysed:

- diagnosing a magnetic tape,
- drawing inferences from text,
- turning pages,
- debugging a program,
- moving a cursor,

searching in a database,
- searching in a text

The details of the task will be given in connection with the observations.

3. OBSERVATIONS

In the observations I will try to illustrate the claims made by reference to Table
1. I will thus try ·to cover the questions of:

- the size of the problem space,
- the accessibility of necessary methods,
- the adequacy of prior knowledge metnods,
- the adequacy of prior knowledge models,
- the problem interpretation.

I will also try to analyse the different aspects of what was learned in terms of
goal-condition-method rules, higher order rules, problem schemata and causal expla
nations.

3.1. Size of problem space - diagnosing a magnetic tape

The importance of this aspect can be illustrated by some observations reported by
säU (1984).

Four subJects were asked to solve the following problem:

"The computer operations department has given you a magnetic tape. They do not
know what it contains. The tape is only useful if it contains a first record
with some basic information (record type= G) and some records of either type A
or type B. (record type= A or B). They want you to find out if that is the
case."

Tne four subjects were chosen from students enrolled in a 20 week programming
course. The topics of the course which are relevant for the observations were: pro
gram design according to the JSP-method, COBOL programming and testing. The subjects
can be characterised as follows: One was an experienced programmer with 20 years of
ICL experience. (Subject 1), two were beginners with some background in computer use
(subjects 2 and 3), one was a social scieutist, with no computer background at all
(subject 4).

There was a marked difference between the subjects in solution times and quality.
The totally inexperienced subject (no 4.) worked about 5 minutes on the problem
before giving up. The subJects with some computer programming background (nos 2 and
3) solved the problem within 2 and 4 minutes respectively. Both these subjects used
JSP-notations (which tney JUSt had learned). Their actual solutions were not
extented to include all relevant matters. (i.e. the problem could have been treated
as a backtracking problem).

152

Subject l, the most experienced programmer used three different approaches to solve
the task. In his first approach he tried to find an existing program to find out
what the tape contained. This attempt took about 10 minutes. After having inquired
about the purpose of the experiment, he discovered he was expected to write his own
program. tle started to construct a flowchart solutlon, which constituted his second
attempt, lasting for about 4 minutes. His third approach started, when the experi
menter told him that a JSP-solution was required. He made three different attempts
with the JSP-method, each using a different interpretation of the problem. Tnese
attempts will be discussed under the heading of "problem schema".

Tnese observations indicate that subJect l worked in a much larger problem space
than subjects 2 and 3 did. Not only did he consider several different methods (look
ing for an existing program, werking wit flow-chart and the JSP-method), but he also
considered different kinds of alternatives within the JSP-method, once he was
required to use that method. Subjects 2 and 3 had very few alternatives. Since they
had just learned the JSP-method, this method was readily accessible and natural to
take as a basis for the construction of the problem space . At the same time, their
problem solution was less complete than the one offered by the more experienced pro
grammer. This limitation is also probably due to their smaller problem space. One of
them (subject 2) considered the backtracking possibility, but did not do any work on
that track.

3.2. Accessibility of necessary methods

3.2.1. Drawing inferences from text

The importance of this aspect can be illustrated by some observations reported by
Askwall (1984). The subjects were instructed to read texts and draw inferences from
these texts. The texts were presented either on paper or on a VDU screen. All sub
jects worked in both conditions. It was found that the amount of time needed to read
the texts did not differ in the two conditions. Nor did the total time used for
drawing inferences differ between the conditions. What differed, however, was the
methods used to answer the inference questions. In the paper situation, the subjects
often sought the information needed to draw the inference among the pages given
them. Such searches occurred less frequently in the VDU-situation. Instead the sub
jects in this situation tried to answer the inference questions by referring to the
parts of the text they had remembered. Even though the commands for turning pages
were very simple, they still must have presented some degree of memory load. We can
conclude that the method to turn pages was less accessible in the VDU-situation than
in the paper situation, and was therefore less often used.

3.2.2. Turning pages

The plausibility of the above explanation
another task (reported in Waern, 1984).
pages" in a VDU-situation. Three different

(a) go forward n pages;
(b) go backwards n pages;
(c) go to page x.

can be supported by observations in
Here subjects were simply asked to "turn
commands were taught:

Eight subjects worked through 192 tasks, requiring them to turn pages. The tas les had
either of the following forms:

(a) you are on page 10 and shall move five pages forwards;
(b) you are on page 10 and shall move to page 15;
(c) you are on page 10 and shall 10ove first to page 15, then 3 pages oackwards.

153

The most efficient methods to perform these tasks can be abstractly formulated as
fellows:

(a) if the task requires you to go a certain number of pages backward or forward,
then use the backward or forward command, and fill in the number of pages in tne
variable;

(b) if the task requires you to go toa certain page, then use the page command and
fill in the number of the pages in the variable,

The results (from eight·subjects) showed that only one subject used both rules con
sistently. All ether subjects preferred the backward/forward command, even when it
was not adequate. Most subjects complained during their inefficient use of commands
"that it was so difficult to have to mentally count the number of pages to move",
After 96 tasks one subject' discovered that she could use the page command (whereas
this command should have been used in 48), Her comment was: "How s tupid I am: I
could use the page command instead!" And so she did in the rest of the tasks, when
ever it was more efficient to use this command,

Ti°1e interpretation can easily be based on the accessibility of the commands. The
page command was simply less accessible than the forward/backward commands, It is
however, difficult to explain this phenomenon. Was the page command less familiar,
and the forward/backward command closer to the methods used when turning pages?
(This is the explanation suggested in Waern, 1984). Or was the forward-backward com
mand rule "reinforced" by the tasks, since it could be used in twice as many tasks
as the page command? The design does not provide enough information about such
questions, The question of the accessibility seems to be important and worthy of
further exploration.

3.3. Adequacy of prior methods

3.3.1. Debugging a program

Observations concerning the debugging task have also been presented in Sääf (1984).
Tne same subjects participated in the "tape task" above: one experienced programmer
and three inexperienced persons, Here the task consisted of finding four different
errors, which were inserted in an existing on line COBOL program. (As mentioned
above, the subjects were enrolled in a course, in which among otner things the COBOL
programming language was taught).

The subjects used quite different methods at the beginning. The experienced program
mer expected to be able to use error messages from the compiler, but the compiler
did not indicate any errors. de then started to inspect the program manually. He
first checked the overall structure of the program, which was correct, He then went
through the program one section after another, comparing the program statements with
a program which he himself had developed earlier in the course. Using this method he
detected one simple syntactic error (a missing period), The two subjects, who had
some knowledge about computers, solved the problem using a method which was quite
different, They used the computer to find and correct the errors as they occurred,
By this method all four errors were found and corrected by these two subJects,
before the first subject had finished his desk-checking, The first subject used the
computer method to find and correct the rest of the errors.

These observations suggest Chat the experienced programmer has learned a method
which is no longer adequate, i.e. desk checking, In fermer days, CPU-time was
expensive, and programs could not be checked using the computer. Desk cnecking was
therefore tne only feasible method, even if it took a large amount of time and was
inefficient. However, the observations also show that the programmer soon adapted to
the new situation. He quickly learned to use tne more efficient computer method for
debugging, even without explicit instruction.

154

3.3.2. Moving a cursor

The observation which is to be discussed here has been presented in Baladi, (1983)
and Waern, (1983, 1984). It is interesting enough to warrant consideration once
again.

The observation concerns one subject, a skilled ty.i.>ist, and a small part of a word
processing task. Ina word processing system the positioning of the cursor plays a
central role. The cursor has to be correctly positioned in order to write as well as
to delete, to find text strings as well as to justify paragraphs. Here I shall only
consider the particular task of moving the cursor. In the word processing sys tem
used (a screen editor, called VIDED) the cursor could be moved in several different
ways. The arrows keys were most relevant, when small movements were required. The
tab, name and return keys could be used for movements over greater distances. Tne
space bar inserted blanks, and tnus seemed to move the cursor one step to the right
for each short press (repetition was J_)Ossible by prolonging the time spent pressing
a key).

It was found that the subject could quite adequately move the cursor by means of the
arrows on the terminal, as long as the cursor was to be moved upwards or downwards
or to the left. When the cursor was on the correct line, but to the left of the word
to be cnanged, the subject repeatedly made the same error: She pressed the space
bar. In this particular system, the space bar causes blank signs to substitute those
signs existing at the place immediately following the cursor. Thus, when the subject
pressed the space bar, one or several letters disappeared from the screen. Tuis was
of course not difficult to detect. The subject was very annoyed with herself when
she observed what she had done. Nevertheless, the next time the same situation
occurred - i.e. the cursor was to the left of the target word - the subject pressed
the space bar.

Tnis observation can be explained by reference to the subject's prior knowledge. She
was a skilled typist. On a typewriter, tne space bar moves the typing head forwards
(to the right), without affecting the text. In typewriting, pressing the space bar
is one of the methods frequently used, to move over existing text. Thus, the obser
vation lets us know that a prior inadequate method can be very difficult to
suppress. In particular, it may hold that the method is more difficult to suppress,
if it is contained in a higher order goal (here to change a word). The method itself
was only subsidiary to the goal. The subject might not have paid enough attention to
suppress the inadequate method, when concentrating on changing the word.

3.4. Prior models

3.4.1. Searching in a database

The observations to be presented here have been analysed in greater detail in Linde
& Waern (1984). Ten subjects were asked to use a database in order to answer a ques
tion. They were asked to identify a person who was described in terms of how he was
dressed, wnat he did at a certain time, and where he was. In the database, there was
no person to be fow1d using only this description. Instead, the subjects had to use
the description together wi th the database to make inference about the person who
could plausibly correspond to the description. Thus we can say that tne dataoase was
"incomplete" with respect to the question posed. Observations by means of think
aloud protocols showed that the subjects handled this problem in different ways.
Most subjects soon discovered that the database could not answer the question on
basis on the description. After this detection, some subjects started to make infer
ences and guess about possible persons. These subjects quickly arrived at a plausi
ble answer. Other subJects toiled with the idea that the name of the person could be
derived from the description, if only the description was used in an intelligent
way. These subjects did not start inferring or guessing, after their first actempt
failed. Instead, they tried different derivations of the description in order to
find the name of the described person. For instance, the description mentioned that

155

the person was engaged in an actLvLty together with several others. These subjects
tried to find an activity in which several other people could be engaged and to
identify them. These subjects took much longer to find a plausible "person".

These observations can be interpreted as showing the effect of a model of a database
search. Ine slow subjects may regard a database as a complete source of information,
where an adequate search formulation is essential. The quicker subjects soon found
out that the database could not answer the question but that they themselves had to
make inferences and were allowed to guess. Whereas the slower subjects might have
nad the idea that the answer had to be "correct", the quicker sub j ec ts had the idea
that the answer only ~,ad to be "plausible". Of course, this interpretation is J?OSt
hoc. It would therefore be interesting to invescigate which conceptions people have
of database searches, and how these conceptions affect their search behaviour.

3.4.2. Searching in a text

This observation pertains toa much smaller model than the previous one. In the
present observation, the model of how text is represented in a word processing sys
tem will be discussed, Different aspects of these observations have also been dis
cussed in Baladi (1983), and Waern (1983), (1984).

Three subjects were given the task to search for a given word. The word was not
visible on the screen, In the manual, three different commands were given, in the
following order:

(a) search for xxx on the screen;
(b) continued search for xxx on the screen;
(c) search for xxx in the rest of the text;
(d) continued search for xxx in the rest of the text.

All three subjects started with the first command. Nothing happened, One of the
subjects (used to computer programming) soon discovered that the third command
should be used. The other two subjects (one of whom W"as totally naive with respect
to computers) tried in vain fora long time, until one of them ultililately succeeded.
The totally naive subject was told to look at the manual a little closer, after hav
ing worked with the problem for 13 minutes. She then commented: "Yes, the commands
are al 1 the same". Then the experimenter forced her to use the third command, and
the word was found, Ina second attempt she solved the same problem, within three
minutes.

These observations indicate that the subject' s original model of a text (i.e. that a
text is continuous) inhibited the discovery of the discrimination the system makes
between "text on screen" and "rest of text". The slowest subject did not even detect
the difference in the manual! However, we should note that once the difference had
been detected the amount the slowest subject learned was drastical, One may conclude
that once an adequate model has been found, it will facilitate the handling of the
system. This suggestion nas also been made by several other researchers (Mayer,
1976, 1981, Norman, 1982). The last two observations and Halasz & Moran (1982) have
suggested that an inadequate model will be harmful.

3.5. Problem interpretation - diagnosing a magnetic tape (continuation).

I shall continue to present observations pertaining to the experienced programmer as
he attempted a JSP-solution to the tape task, As mentioned above, the subject made
three different attempts with the JSP method. The first attempt lasted for about 18
minutes. Here · he had difficulties using the JSP-method, hut ultimately produced a
solution, assuming that record G was the first physical record on the tape. In the
second attempt witü the JSP-method, he tried to construct a solution in whic11 the
first physical record did not have to be record G. He used 11 minutes for this
attempt, again having difficulties with JSP-notation and ending up with a JSP-

156

solution without backtracking. In the last attempt with the JSP-method, he decided
to incorporate the backtracking in his solution. So he did, within 12 minutes, end
ing up with a totally correct JSP-structure.

Two different difficulties in problem interpretation can be identified in this case.
The first can be considered to be rather superficial, concerning the interpretation
of the concept "first record". One attempt of the solution used the interpretation
"first physical record". Next at tempt abandoned this interpretation. The second dif
ficulty had a deeper basis, and concerned the consideration of different alternative
possibilities in relation to the JSP-method. The problem could easily have been
solved without considering the case in which the G, A or B records are missing. (If
this case is considered, we are confronted with a bacKtracking problem in JSP
terminology). Tne experienced programmer first solved the problem without consider
ing backtracking. Tnis was also the way in which the inexperienced programmers
solved the problem. However, the experienced programmer's third and last attempt
with the JSP approach used a backtracking solution.

It is probable that this subject's long experience of programming made him more
attentive to the possible alternatives. His interpretation of the problem was not as
clear-cut as it was for the others, wno onlj considered one single alternative.

3.6. what is learned?

I shall now analyse the contents of learning. ·n1e question here will concern,
the observations can best be described. Is it possible to find evidence that
jects learn goal-condition-method rules? That tney learn higher-order rules?
they learn problem schemata? Tnat they learn causal explanations?

how
sub
That

To answer these questions, we must decide what's meant by these different concepts.
I have tried to give an intuitive idea about what they mean above. Now I have to
relate these descriptions to actual observations. I will primarily base my interpre
tations upon the contents of the subjects' think-aloud protocols. These protocols
offer some of the subjects own thoughts about their learning. The protocols also
provide some information about the subject's intentions, diagnoses of errors and
attempts to recover from these errors. This information can give us some hints about
the kind of learning that occurs. I shall go through the tasks in the same order as
above, and only discuss those observations, which contain anything interesting about
learning.

3.6.1. Diagnosing a magnetic tape

This task was described in 3.1. For the subjects who were not experienced program
mers, the task can be considered a straight-forward application of a method they had
recently learned, i.e. the JSP method. None of the comments made by these subjects
had anything to do with new learning. They just tried to recall the JSP-notions.
One subject did not recall all of the JSP notions correctly and did not realise he
had made a few mistakes. Thus, if the subjects can be considered to have learned
anything in this task, the learning content can be described by the following rather
backward rule: "If you just have learned a particular method, try to use it in a new
task". Such a rule is of course only applicable in a very restricted educational
situation, where it often may be quite relevant. We may even assume that the sub
jects already knew this rule.

The experienced programmer on the other hand had difficulties with this task. I
explained the difficulties by referring to his larger problem space. We can thus
suppose that what he learned during his three different approaches to the problem
was to use the problem space which was required by the experimenter. This can be
captured by the following simple rule: "If the teacher requires me to use a certain
method, then I have to use it, even though I find other methods easier to use" . Dur
ing his attempts with the JSP-method, he seemed to develop his interpretation of the

157

problem. He struggled with a particular expression in the problem statement (i.e.
"first record") as well as with the problem itself (the backtracking aspect). We can
therefore say that the learning here concerned the interpretation of the problem as
well as the methotl learned. The subject's comments repeatedly referred to the diffi
culties he encountered using the JSP-metnod instead of one of the other well-known
methods (flow-charts, decision tables). These comments indicate that the subject
struggled not with simple condition-method rules but with a connected structure of
ideas. We can characterise this structure as a schema. Since he already had some
well-established schemata, by which the problem could be solved, it was difficult to
establish a new one. He ultimately solved the problem, but whether he learned the
new schema related to the JSP-method is unknown and cannot be concluded from the
data. A schema should be able to incorporate new problems. The data did not contain
any new problems.

3.6.2. Turning pages

In this situation (see 3.2.2.), a clear learning effect was found in the time needed
to accomplish each task (the average time dropped from 6.0 to 3.8 seconds during 30
trials). As described above, this reduction in time was not attributable to the
learning of any new methods. Instead it must be assu,ned that the subjects refined
their procedures to include the chosen methods (even if these metnods were ineffi
cient, as was discussed above). This learning can then be referred to as "automa
tion" of procedures, as discussed by Anderson (1932). One of the subjects learned a
new method, T.nis was the subject, who discovered that the "page" command could be
used in certain tasks. Her comments together with her choice of commands indicate
that she used the following rule after having achieved the insight: "If the task
requires you to go toa particular page, then use the page command" (see 3.2.2.).

3.6.3. Moving a cursor

This task was presented above (3.3.2.). It can be said, that the subject who had
encountered certain dif:(iculties had to learn the following rules: "If you want to
move the cursor right, then do not press the space bar" as well as: "If you want to
move t;-1.e cursor right, then press the right arrow key". The subject clearly had dif
ficulties using the rule concerning suppressing certain actions. However, each time
she found out what was wrong, she had no difficulties to using the right arrow key.
Tuis finding supports the analysis in Table 1: It takes langer to unlearn a strong,
dysfunctional method than to learn a single, new one.

3.ó.4. Searching in a data base

In this task, (see 3.4.1.), the slower learners showed some amount of learning. This
learning has several diffe~ent aspects. First, the subjects learned that the data
base cannot give them the information required. This learning is related to the
interpretation of the vroblem or the problem schema. Toen the subjects learned that
some search commands were more useful than others. Most subjects ended up using a
search command based on a time search. Several possible persons could not possible
have had time to move from where they were at the time specified to the required
place. Tuis learning is rather specific, and can be captured in task specific rules
such as: "if you are asked fora person, performing a particular activity at a par
ticular place and a particular time, search for a time close to the mentioned time."
and: "if you receive a list of events which happened at approximately a certain time
then check which persons could be at this place at that time." Tnis learning may not
have been consciously experienced by subjects as such, none of them expressed any
conscious choice of key words. The fact that learning had taken place was obvious,
both in the way subjects treated newly obtained information (when they started to
make inferences on basis of time and place after a while), and in the actual choices
of commands the subjects made.

158

3.6.5. Searching in a text

Tnis task was presented in 3.4.2. It was found that one subject nad problems
discriminating between the different commands given in the manual.

As already stated, the subject learned this discrimination quickly, once she had
noticed the difference. We can say that she learned to attend to the condition sides
of the rules; "if on screen, then use command l, if in rest of text, then use com
mand 3". These rules are qui te close to the wording in the manual. Thus it can be
assumed that the subject learned to read the manual more carefully than in the
beginning. This may be captured by the general rule: "If given a manual, then read
every word carefully". lt is of course difficult to tel1 if this general rule was
really learned or if the careful reading of the manual was restricted to tnis par
ticular task. T"nere were no more exdlllples, in which careful reading of the manual
could have led to better performance.

In summary, it can be said that tne learning outcome found in
mostly concerned with either simple goal-condition-method rules
No examples of higher order rules were found, nor of attempts
tions.

4. DISCUSSION

these examples was
or problem schemata.
at causal explana-

I have tried to show that common psychological principles can well be used to
analyse tasks and interpret observations from beginning users in computerised tasks.
Is there anything that makes the study of learning in a new computer system dif
ferent from the study of learning in other tasks?

Computer system tasks are generally more complex than ocher commonly used learning
tasks. Therefore it can be suggested that the learning of such tasks should also be
more complex. Since psychology has suggested different kinds of learning (declara
tive and procedural learning, event and probabilistic learning, verbal and concept
learning, for instance) a complex situation should be expected to contain several
different kinds of learning. The observations indicate that users strongly rely upon
prior knowledge when approaching a new system. We can thus expect that transfer
effects will be strong, pos1t1ve as well as negative. Depending upon the prior
knowledge activated by the task, learning will be quick or slow. Learning processes
in computerised situations can be characterised as declarative or procedural, etc.,
depending upon the prior knowledge activated by the new task.

A second problem in describing learning in a complex task concerns the theoretical
representation of the learning content. Many researchers like to talk about sub
jects' "models" of systems. However, the concept of "model" is still only intui
tively defined. I have suggested that at least four different types of learning
content nave to be included in a "model". My analysis was based upon phenomenologi
cal differences between concepts as "actual actions", "abstract rules", "schemata"
and "causal explanations". Several other types of learning contents can certainly be
suggested. A better coverage of possible alternatives would be arrived at using a
suitable taxonomy of learning outcomes. As far as I know, however, such a taxonomy
does not exist.

Given the kinds of learning content I have suggested, the observations indicate that
some kinds are more common than others in the situations studied here. Examples
which could be interpreted as learning of simple goal-condition-method rules and
problem schemata were found, wnereas examples which could be interpreted as learning
higher-order rules or causal explanations were non-evident.

T"ne failure to find the two last kinds of learning can be interpreted in different
ways. Either these kinds of learning are rare, and thus did not occur in this small

159

sample of tasks. Or the particular situation, in which the tasks were studied was
not suited to find such kinds of learning. The particular situations all concerned
unassisted learning in novices, during their first encounter with rather unknown
systems. The learning was characterised as learning by experience, or problem solv
ing. In this kind of learning, the low level rules may be the first ones to be
attended to. Also, the problem schema which has been implied was necessary to solve
the problem, and we do not know, if it was learned as a schema or as a particular
instance. It may be true that higher level rules and causal explanations occur later
in the learning process. It may also be true that such types of learning outcomes
are easier to achieve when the rules and explanations are suggested by an instruc
tor.

From the observations presented here we may conclude that users' prior knowledge
represents a relevant factor when difficulties in the first experience with a com-.
puter system are encountered. We can therefore conclude that properties of systems
cannot be tested without considering users' prior knowledge.

REFERENCES

Anderson, J.R. (1982). Acquisition of Cognitive Skill. Psychological Review, 89,
369-406.

Askwall, S. (1984). Computer supported reading vs reading text on paper. F0A
report, No. D 53018. Also accepted for publication in International Journal for
Man-Machine Studies.

de Bachtin, 0. (1984). It is wnat it' s used for. Paper to be presented at the first
IFIP conference on Human-Computer Interaction, Londen.

Baladi, P. (1983). Inlärning av ett ordbenandlingssystem (VIDED). (Learning of a
word processing system (VIDED)). B.A. thesis, Department of Psychology, Univer
sity of Stockholm.

Barnard, P.J., Hammond, N.V., Morton, J and Long, J. (1981). Consistency and compa
tibility in command languages. International Journal of Man-Machine Studies, 15,
87-134.

Card, S.K., Moran, T.P. and Newell, A. (1983). The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, tlillsdale, New Jersey .

Halasz, F. and Moran T.P. (1982). Analogy considered harmful. Proceedings from the
CHI '82 Conference: Human Factors in Computing Systems. ACM.

l:lalasz, F.G. and Moran, T.P. (1983). Mental models and problem solving in using a
calculator. Proceedings from the CHI '33 Conference: Human Factors in Computing
Systems. ACM.

Kieras, D.E. and Polsen, P.G. (1982). An outline of a theory of the user complexity
of devices and systems. Project on User complexity of devices and systems. Werk
ing Paper No. 1. University of Arizona and University of Colorado.

Kieras, D.E. and Polsen, P.G. (1982). An approach to the formal analysis of user
compiexity. Project on User complexity of devices and systems. Werking Paper No.
2. University of Arizona and University of Colorado.

Kintsch, W. and Greeno, J.G. 0982). Understanding and solving word arithmetic prob
lems. Technical Report, Department of Psychology, University of Colorado.

Linde, L. and Waern, Y. (1984). On search in an incomplete database. F0A-report. (in
press).

Maier, N.R.F. (1931). Reasoning in humans. II. Tne solution of a problem and its
appearance in consciousness. Journal of Comparative Psychology, 12, 181-194.

Mayer,(1975). Different problem-solving competencies established in learning com
puter programming with and without meaningful models. Journal of Educational
Psychology, 67, 725-734.

Mayer, R.E. (1981). The psychology of how novices learn computer programming. Com
puting Surveys, 13, 121-139.

Moran, T.P. (1981). The corumand language grammar: a representation for the user
interface of interactive computer systems. International Journal of Man-Machine
Studies, 15, 3-50.

-

160

Moran, T.P. (1983). Getting into a system: ixternal-internal tasK mapping analysis.
Proceedings form the CHI 'd3 Conference: HUlllan Factors in computing Systems, The
Association for Computing Machinery, 45-49.

Newell, A. (1973). Production SfStem: Models of control structures. Visual informa
tion processing. Chase W.G. (Ed.). Academie Press, New York.

clewell, A., Simon H.A. (1972). Human problem solving. Englewood
Norman, D.A. (1982). Five Papers on Human-Machine Interaction.

112-TR-ONR-8205.

Cliffs, New Jersey.
Report NO. CHIP-

Payne S.J., Green, T.R.G. (1983). Tne user' s perception of the interaction language:
A two-level model. Proceedings from the CHI '83 Conference: Human Factors in Com
puting Systems, The Association for Computing Machinery, 202-206.

Reisner, P. (1982). Formal grammar as a tool for analysing ease of use: some funda
mental concepts. Human Factors in Computer Systems. Thomas H.J. and Schneider M.
(ids). Ablex.

Rumelhart, D.E., Ortony, A. (1977). The representation of
Schooling and the acquisition of knowledge. Anderson, R.C.,
tague W.E. (eds). Lawrence Erlbaum. Hillsdale, New York.

knowledge in
Spiro, R.J.

memory.
and Mon-

Sääf, J. (1984). Can experience be a disadvantage in computer programming. A study
of the problem solving approaches of experienced an inexperienced programmers.
B.A. thesis. Department of Psychology, University of Stockholm.

Waern, Y (1983). Prior knowledge as obstacle and help in computer aided tasks. Werk
ing Papers from the Cognitive seminar, Department of Psychology, University of
Stockholm. No. 17.

waern, Y. (1984). Learning computerised tasks as related to prior task. knowledge.
Manuscript, submitted for publication.

WEB TEACHING AS A DESIGN CONSIDERATION FOR THE
ADAPTIVE PRESENTATION uF TEXTUAL INFORMATION

Piet Kommers

TH Twente, Enschede
Netherlands

The understanding and the successfully acquisition of textual information seems to
be highly dependent on the presentation sequence employed. System control and
learner control can be optimally combined if there is a conceptual graph wnich
represents the structural relations between the concepts in the text. Primarily
based on the notions of Web Teaching (Norman, 1973), one can design an adaptive
presentation mechanism. One algorithm for the computation of the centrality index of
concepts in a network will be proposed. Consultancy of reader ratings based on prior
knowledge seems to be necessary in order to match prior and new information.

1. INTRODUCTION

In this paper, the rational and the global characteristics of an adaptive text
presentation system will be presented. Two main antecedents will be proposed:

(a) adaptive instructional systems and their link to theories about human knowledge
acquisition;

(b) Knowledge representation and its function in guiding decisions.

The relevance of user oriented text representation can be found in the growing area
of VIDEOTEX as found in the current national systems: PRESTEL, ANTIOPE and TELIDON.
In the C.A.I. systems we also see a growing number of programs explicitly designed
to effectualise a highly individualised growth of knowledge. One important feature
of C.A.I. is the advantage if werking interactively. Tuis can lead to an accurate
correspondence between the information presented by the sys tem, and the user' s c.q.
pupil's state of knowledge.

As we are only just beginning to know when and how new information is linked into
prior knowledge, it seems necessary to resume several theories in cognitive .science,
and translate them to the specific situation of "interactive consultancy of text
base".

By means of computer based text
retrieval. Tuis means that the
episodes, but inserts his knowledge
then be manipulated by the user.

displays, reading can grow into information
author is no longer the composer of story-like

elements into a conversational system, which can

One way to represent the author's knowledge is in the form of a conceptual graph.
As we will discuss later on, this graph can be seen as a partially ordered set of
concepts, linked by labelled or unlabelled relations. Based on the specific posi
tion of a concept in this graph, one can state a certain degree of centrality or
decentrali ty.

In this paper I 1/iould like to illustrate the fact that the configuration of concepts
derived from expert knowledge, can be of great importance for the control structure

162

of user guided text presentation, However, before this conceptual graph can be
built, we need to converse with experts, about the central and peripheral concepts
which should be distinguished. According to several recent theories about knowledge
acquisition this dimension (central - peripheral) seems to be quite important, espe
cially when it has been proven to be related to the dimension concrete abstract ,
We then have a theoretica! framework that can be used to sequentia! decisions during
the presentation of text. Finally we will discuss the problem of consulting the
reader's metacognLtLon in order to let him choose the ideal route through a concep
tual graph. Referring to recent theories about the "constructive" aspect of
knowledge acquisition, we assume that this learner controlled presentation sequence
must ideally be coached by a monitoring system component, which adjusts between the
actual state of the user's knowledge, and the conceptual graph, derived from the
expert knowledge.

2. ADAPTIVE INSTRUCTION AND THE ACQUISITION OF KNOWLEDGE

Ins truc tion can be adapted to
possesses both possibilities
specific domain of knowledge.
a strategy from which control

the individual characteristics of pupils, if it
for interaction and some form of intelligence within a

Beyond these two, the instructional medium also needs
decisions can be derived.

One of the strategies often employed in C.A.I. bas been derived from the fermer
tradition of learning machines, having been used in the so-called "programmed
instruction". Mainly based on skill learning, this strategy says: "Try to perform
the next difficult step, If it is not possible, then go back (to the easier level)
and try again afterwards." Tuis approach results in a large amouut of system con
trol: The sys tem monitors, traces the performance of the learner, anticipates the
next steps of the learner, and controls the sequence of information for the student.

As cognitive science developed, differences were noticed between learning processes
whether the learning process was finally directed to mastery of skill or to

acquisition of knowledge proved to be important. In the case of verbal learning,
based upon conceptual knowledge, it has proven to be quite difficult to unambigu
ously sequence the subject matter from easy to difficult. The question of how con
tent should be sequenced or ordered has been the subject of educational debates for
at least the past 70 years (Dewey, 1902). Nowadays the question of sequencing con
tent matter is certainly quite important, in order to equip presentation devices
with some sort of adaptation mechanism.

Task analysis as a sequence of prerequisites seems to be ineffective. The answer to
the question "How should verbal information be sequenced ?" can be found in theories
of cognitive psychology and artificial intelligence. One of the most essential
predecessors in this area can be found in Ausubel (1963), who claims that knowledge
can be represented as a cognitive structure, Most of the followers in the Ausu
belian tradition elaborate on ~~is basic notion, that knowledge consists of interre
lated elements (concepts) which need each other to operate in a mentally correct
way. In the last three decades, several investigators have tried to develop models
about how knowledge structures change during the process of learning, forgetting,
association and authoring.

In the work of Norman and Rumelhart (1973), an interesting strategy to link new
knowledge to pr .ior knowledge has been developed (see figure 1). Tnis so called "Web
teaching" strategy can be seen as a promising procedure for the sequencing of sub
ject matter: Presentation of new information should match the cognitive organisation
a learner already has, and should be derived from the structure in the subject
matter. Tnis firstly supposes a rather complete description of the actual state of
knowledge in the learner, and secondly a quite detailed representation of the sub
ject matter structure.

Figure 1

163

C

How to add new material in memory. Part A and the shad
ed parts of B and C indicate what is already in a
student's memory. If we add new knowledge in the
manner indicated by B, it has no interconnections with
prior knowledge and it is likely to be difficult to ac
quire and to retrieve. If the same new knowledge is
well integrated with the old, as in C, then learning
should be easier and retention better (From: Norman,
1973).

164

As a consequence of the basic assumption, that knowledge grows by means of interre
lation and embedding new elements in prior knowledge, Norman prescribes to begin by
relating new topical information to stable topical concepts in the existing
knowledge structure. Subtopical information could then be connected to the topical
concepts just established, and so forth.

Figure 2

ORIGINAL STATE

~),

~ A 0-<l>
' "y>

FIRST

B 8~::l 1=t3 t J

Web learning. First forma net of concepts, each well
connected to previous knowledge. Toen, slowly build a
firm, integrated web onto that net. Tuis procedure is
not so easy to perform as that of linear learning, but
it should yield superior results (From: Norman, 1973).

In figure 2 the growth of knowledge is expressed. In terms of sequence, it will be
clear that web teaching cannot prescribe the presentation order deterministically.
It can however be used as a heuristic paradigm, in order to develop a new mechanism
for interactive text presentation.

Adaptive in terms of Web teaching would mean: "According to
prior knowledge in the reader". As this knowledge is highly
time and, as it now appears, too extensive to represent in a
look at the meta-knowledge of a pupil as a tool for sequence

the actual activated
individual, variable in
proper way, I tend to
decisions.

In any case there are not enough indications at this time to warrant the assumptions
that one ideal sequence exist for every reader, since the ideosyncratic prior
knowledge would require strictly individual routes through textual information. On

165

one hand we have stated that new information has to be adapted to the prior
knowledge, on the other hand we have met the necessity of "content structure" as a
representation of the domain of new information.

In order to design a computer based program for the adaptive presentation of texts,
we are exploring several prototypes which differ in their conversational strategy,
but are all based on the notions of k.nowledge representation as we will describe in
3.

The basic text consists of paragraphs. Each paragraph focussed on one or more con
cepts, placed in a conceptual network. Each paragraph can be addressed, by means of
this network, and then be selected on base of its structural position in the net
work. During the conversation with the pupil the system must be able to answer the
commands given by the student, such as:

(a) give me 4 main paragraphs which deal with the central relations between the fol-
lowing concepts: PRIME MINISTER, QUEEN and LORD MAYOR;

(b) give all the paragraphs in which more than 4 concepts are used.

Beyond the structural position in the network, every concept can be labelled with a
centrality factor. Tuis reflects the relative status which is awarded by a domain
expert, or an instructional designer. By means of this relevance status we can give
the next kind of command:

(c) give me 15 paragraphs which act as descriptors of the 3 most relevant concepts
in the network;

(d) give me the three most relevant concepts related in
cept of e.g. SUFFRAGE.

By means of these procedures, we have the possibility to
sub domaines of text, which can serve as key concepts
acquisition of new information.

the first order to the con-

extract relatively small
during the transference and

conceptual

structure

•
Figure 3

166

textual domain

Conceptual network for the control structure during
text presentation.

In the example in figure 3 the central part of the "Dutch form of government" could
have been constructed by means of several texts, or by means of a direct conversa
tion with an expert on this topic. As can be seen, the concept of CONSTITUTION has
a structurally high central position. Some concepts are partly recursively defined,
and can finally be described by referring to themselves. Each concept finally
points to one or several paragraphs of text, which are visible to the reader. The
attainability of paragraphs from a certain point can be derived from the correspond
ing path in the conceptual network. Algorithms. as has already been stated, can be
performed, making use of the numeric label, assigned by the author of the network.

Summarising the previous passage, I would like to stress the relevance of conceptual
structures as a directory guide for text presentation. One way to enable the
novices to obtain new information is often done by intensifying the relational
structure in the text itself. By means of computer based systems however, we have
the possibility to control the presentation sequence by means of a paragraph related
conceptual network. Based on the notion that the growth of knowledge is highly
dependent on the reader's prior knowledge we need a presentation strategy which has
been explicitly stated and which can mediate between the conceptual graph as a
representation of expert knowledge and the reader's activated state of knowledge.

3. KNOl-11.EDGE REPRESENTATION AND ITS FUNCTION IN GUIDING DECISIONS

Knowledge representation is often encountered in relation to the frequently used
term "Expert systems". On one hand it is commonly remarked that expert behaviour is

167

more than the availability of knowledge. On the other hand we see a relatively
strong accent in one area within A.I. cal led "Knowledge engineering". In the con
text of my topic, I would like to restrict the term "Knowledge representation" to
the declarative (factual) aspect of knowledge, without the procedural components.
As we stated before, adaptivity of a presentation device requires information about
the STRUCTURE of the factual elements. This does·mean that the complete knowledge
of e.g. an expert has to be brought into the system. At first there is a need to
represent the conceptual elements which play a role in the knowledge domain. These
can consist of short descriptions of concrete OQjects, persons or attributes.
Beyond this they can be entities in amore abstract level: Concepts such as "power",
"influence" or II loneliness". One way to generate these conceptual elements is to
let experts describe a new domain in a top down way. If we choose a domain such as
"musical instruments", we immediately perceive the taxonomie structure:

MU/ INSTRUMENTS

" INSTRUMENTAL VOCAL
.,.,/"I '-........

STRINGS WINDS PERCUSSIONS

Of course, after a certain level specification we soon reach
locational relations. Going even further an expert will
ruled ••• and finally texts.

causal, temporal and
formulate propositions,

Before having reached the level of saturation when reading complex texts, network
can provide interesting tools for instructional decisions. A first deduction possi
bility to identify the most central concepts exists. In tree structures the central
concepts can be found in the upper nodes. In partially cyclic structures several
computations will be needed such as those available in graph theory.

As a try-out we once represented the information in two texts about the Dutch form
of government. Five members of a project team notated the most salient relations
between them, which were found in the texts. Most parts were different, due to the
different levels of detail and completeness which were chosen. In contrast to the
conceptual network about musical instruments, a much more complicated structure was
found: More cycles and also more diversity in the types of relations between the
concepts. At this very moment the six graphs are being analysed the degree of
overlap, and the structural equivalence of different labelled concepts are being
calculated. For more details about this method of "construct analysis by the
integration of cognitive graphs", see Bakker (1984). Besides the question of how
domain experts should be consulted to build rather complete and consistent represen
tations of the content matter, we will be confronted with the question of how to
reconstruct the prior knowledge of an individual pupil during the interaction with
the presentation system.

One remaining question is the following: to which extend will domain experts and
instructional designers be able to construct conceptual graphs as we provisionally
did for the area of State Government. Recent research by Tillema (1983) has shown
that normal teachers are able to do so after they have been trained fora short
period.

Returning to our conceptual graph (which is only partially reproduced here) we can
represent some typical sequential states in order to discuss the presentation stra
tegy. The first basic choice we can make is to which extend the system must be
equipped with autonomous control strategy, or, to which extend the learner control
should be consulted. Because we cannot completely represent the knowledge structure
of the learner in the computer, it seems to be practical to rely on a good deal of
learner control. The choice repertoire could be reduced to the scope of the plausi
ble alternatives, generated by the system.

168

•
Figure 4 Conceptual graph.

In the graph represented in figure 4 we computed per node a centrality index:

centrality of node = L d(j)
jl(i,j)e: E

Each text paragraph can be labelled wi th an information index: The sum of the cen
trali ty indexes of the concepts which point to this paragraph.

For large networks we can make use of the GRADAP package, in order to compare
several centrality measures, as described by French (1956), Hubell (1965) and Hoede
(1978).

After every paragraph has been given a position on the dimension central-peripheral,
the system could start its presentation with a top down strategy as far as the con
ceptual graph permits it. Tne crucial point of adaptivity starts as soon as the
system perceives two or more equivalent paragraph labels. At this moment the system
can display the concurrent concepts and ask the pupil to rank them on the basis of
prior knowledge (a high rank will mean that the pupil thinks he is relatively fa:mi
liar with the concept). By means of this pupil document the conceptual structure
will be rescaled until a new concurrent situation requires more choices to be made
by the pupil. The ideal numeric impact of the rescaling on the author defined cen
trality is still a subject which needs some research.

One advantage of the graph-dependent centrality index is that the subject matter
expert does not need explicit assumptions about the relative status of the concepts.
They become clear after the author mentioned the central relations. Another advan
tage is the ergonomie plausible representation mode of graphs, which can be quite
helpful for authors of didactic texts to reconstruct the basic rationale and eventu
ally modify it.

169

REFERENCES

Ausubel, D.P. (1963). The psychology of meaningful verbal learning: An introduction
to school learning. Grune and Stratton, New York.

Bakker, R.R.(1984). Construct analysis as a method of knowledge integration of cog
nitive graphs. Memorandum 463, Department of Applied Mathematics, TH Twente,
Enschede.

Findler, N.V.(1979). Associative Networks, representation and use of knowledge by
computers. Academie Press, London.

Kommers, P.A.M.(1980). Structuring and presentation of texts. Internal report, SVO
BS 445, Utrecht.

Kommers, P.A.M., Beukhof, G., Tillema, H.(1982). Design of an adaptive program for
the presentation of textual information. Swets & Zeitlinger, Lisse.

Norman, D.A.(1973). Memory knowledge and the answering of questions. Contemporar1
issues in cognitive Psychology. Solso, R. (Ed.). Winston, New York.

Pask, G.(1976). Conversational techniques in the study and practice of education.
British Journal of Educational Psychology, 46, 12-25.

Posner, J.P., Strike, K.A.(1976). A categorisation scheme for principles of sequenc
ing content. Review of Educational Research, 46, 665-690.

Sowa, J.F.(1984). Conceptual structures, information processing in mind and machine.
Addison-Wesley, Amsterdam.

Stokman, F.N., Veen, F.J.A.M. van(l981). Gradap, Graph definition and analysis pack
age, volume 1 and 2. Universiteit van Amsterdam.

THE COMPUTER IN THE CLASSROOM

Gerrit van der Veer, Jos Beishuizen

Vrije Universiteit, Amsterdam
Netherlands

The project that will be described in this paper focussed on three topics:
(a) the extent to which the computer may be used to facilitate the adaptation of

the learning process to the individual differences found between pupils;
(b) the impact of the computer on the learning environment as an enrich,nent, espe

cially because of the opportunities it can provide for problem solving
behaviour;

(c) the possibilities of the computer for training cognitive skills in the class
room situation.

1. HISTORIC OVERVIEW AND OBJECTIVES OF THE CAI-PROJECT AT AMSTERDAM

At the Vrije Universiteit in Amsterdam a long term project started about 15 years
ago. In the few first years, research concentrated on theoretical questions about
the interaction between pupil's aptitudes and teaching strategies and the way in
which this influenced computer use. Laboratory experiments were designed in which
issues such as mathematical learning models ,proble·m sol ving strategies, learner con
trol or tutor control of the sequence of units, were evaluated. The subject matter
in these experiments was partly of an artificial nature. Learning conditions were
carefully manipulated. In most cases the pupil interacted with the computer,with an
experimenter at hand to help if anything went wrong. On these occasions the learn
ing material often consisted of complete tutorial courses in which the computer took
over the role of the teacher by explaining new subject matter or by introducing new
skills.

After a couple of years, when the hardware improved and multiuser systems made dif
ferent forms of application possible, other research questions were considered. Toe
place in which research on learning and teaching was done, was moved from the
laboratory to the school. The influence of teacher strategies, pupil characteris
tics and classroom organisation on the use of the computer was investigated in the
normal classroom situation. The "responsive environment" created by the computer
was the basis for extensive field study in twelve primary schools in Amsterdam. The
experimenters no langer controlled the situation, but restricted themselves to
observations and to development of software upon request of the teachers and with
their co-operation.

At the same time some classroom experiments were carried out in the field of problem
solving: on learning a programming language and on information retrieval in ill
structured domains. The central question was, in this case, how the use of a com
puter could provoke real problem solving behaviour. Toe cognitive skills involved
are related to the development of the integration of informaties in society, and are
not traditionally dealt with in the classroom.

171

Adaptation to individual differences has been a central topic in all research during
the last fifteen years. The traditional classroom organisation is in conflict with
the fact that pupils differ widely on a number of variables related to the learning
process. Tuis problem may be attacked in two ways:

(a) adaptation of the pupil in the direction of the "average" student, to whom the
education is leveled

(b) tuning the learning process to individual differences.

Both solutions complement each other. The educational situation itself defines the
feasibility of both possibilities. TI1e extent to which student-characteristics can
be influenced varies tremendously. Van Muylwijk, Van der Veer and Waern (1983) sug
gest a dimension of changeability and mention four categories of learner variables
(see figure 1).

stable, resistant
to change

personality factors
Intelligence
Extraversion/

introversion
Fear of failure
Creativity(?)

cognitive styles
Field

(in)dependence
Visual/verbal
Operation/

comprehension
learning

Figure 1 Dimension of changeability.

mainly defined by current
influence from the outside world

strategies
Heur is tic/

systematic

Serialist/
holist

personal knowledge
structure

Production
rules

Schemata
Semantic

network

Personality factors like intelligence, creativity or negative fear of failure are
conceived as stable and resistant to change. Knowledge and skills(production rules,
schemes, semantic nets) result during the learning process: both content and inter
nal representation are largely the result of the way of presentation. Between these
two extremes are the domain of cognitive styles such as field-dependence, problem
solving styles elaborated by Pask(l976), and the domain of strategies such as
heuristic or algorithmic approach (De Leeuw,1983), serialism or holism. Strategies
are conceived as domain-specific and adjustable, cognitive styles as rather stable
products of talent and education.

Adaptation of the learning environment is more obvious if stable personality traits
define the learning process. In the traditional educational situation, organised in
levels of ability, only intelligence has been treated in this way. We have tried to
apply the results of broader research in cognitive psychology within our experi
ments.

In the restricted scope of this contribution only a brief overview of the results
will be presented. The experiments showed the relevance of internal and external
conditions for the use of computers in the learning situation (section 2). The
experience with the computer in the classroom is described in section 3.

Tuis report is nota final statement. Technology is developing rapidly. Microcom
puters are invading the schools and even the homes. Large amounts of money are
being invested in the development of the fifth generation computers, with their new
architecture and using the new concepts of human-computer interaction. The conclu
sions in section 4 are therefore only valid for the near future. Our results sup
port those critics who believe in the irreplaceability of the teacher because of his

172

unique human faculties to react to a wide variety of educational problems in
interaction with considerable individual differences. The computer is only a tool,
albeit one with unique possibilities to adjust to individual learning behaviour.
Technically speaking, this tool will certainly improve, but only a teacher who is
able to work witn this tool will be able to use it to its full extent.

2. INTERNAL AND EXTERNAL CONDITIONS FOR COMPUTER ASSISTED LEARNING

2.1. Knowledge and skills

In our study with primary school children the observation of Suppes(l979) was con
firmed, that the opportunity to practise certain elementary skills turned out to be
the most important aspect of the computer in this field of education. Our observa
tions revealed that parallel to the educational evolution within which more atten
tion is being paid to individual differences, training skil"ls and becoming
acquainted with a domain, or building-up of a personal knowledge base was the most
favoured way of use. In this respect the computer was enlisted both for remedial
purposes and for exercises after the introduction of new learning material.

A lot of training programs were written because teachers had requested them, espe
cially in the fields of arithmetic, spelling and other language-aspects. For cer
tain arithmetic exercises a considerable gain in learning was observed when the com
puter was used, in comparison to paper and pencil forms of the same exercises.
These results were consistent and extended over periods of 4 months (Kok, 1984) .
The immediate feedback and the levels of help that our program offered, from a first
general hint to increasingly more specific guidance if the error ~ontinued to be
made, showed the unique possibilities of the computer in this field. Training chil
dren to understand texts led to other results. Providing feedback at increasing
levels of specificity did not result in better performance compared to the provi
sion of feedback one day after written exercises were done. Both methods resulted
in a comparable amount of gain for pupils with reading difficulties. Their problems
(not the identification of words but the interpretation of text in relation to
knowledge that was already present) could toa certain extent be solved via simple
delayed feedback. On the other hand we became aware of the problem of the interac
tion between the program and the student in "natural language", especially in a
domain in which the objects themselves are fragments of natural language. Possible
solutions are multiple choice questions, as in the actual training program, or open
end questions for which the responses are matched against an internal list of alter
natives. Tuis last method should enable the student to be more "natural" in his
responses and especially to be able to communicate more freely about the problem
domain, but this would on the other hand make high demands upon the author of the
computer program, and eventually ask fora solution in the sense of an "expert sys
tem" with an implicit model of the user. In our study the teacher could not be
equaled in his precise diagnosis of individual misunderstanding.

In another study (Bernaert, 1978) we observed that students who worked in interac
tion with a teacher asked for more information and examples than their colleagues
~ho were working with a computer program that provided these possibilities. From

our observations we have concluded that the most preferable allocation of tasks
could be to leave the introduction of new material to the teacher and to use the
computer for exercises, in which students gradually need fewer examples, information
and help. If however the computer is used for introducing new subject matter, the
tutorial method is to be preferred. Only after the students have had enough
instruction and examples should they be allowed to take control of the process,
choosing the way they wish to proceed.

2.2. Strategies of learning

(a) Serialism/holism

173

These strategies are derived from the work by Pask (1976). They turn out to be
dependent upon the specific task, like Pask suggested. If one matches the
teaching strategy (the order in which the computer program presents the materi
al) to the individual learning strategy a considerable gain in learning results
is observed(Van der Veer, in the press).

(b) Search strategies
In tasks concerning the search of information from large databases two stra
tegies may be distinguished, the one characterised by the immediate use of sub
sets of the data that are isolated from the whole, the other by an approach in
phases, combining several subsets into one ultimate goal set, before actually
screening the information in the resulting set. In domains unknown to the stu
dent, with an apparently vague structure, we found that the process of search
can be facilitated by coaching the searcher to be consistent in his preferred
method, although generally speaking the two approaches are equally successful
(Beishuizen, 1984; Beishuizen and Van der Veer, in the press), as is the case
for serialism or holism.

(c) Coding strategies
In learning to write computer programs, a distinction can be made between learn
ing to structure one's problem solution (programming) and learning to code the
solution into a computer language. The coding behaviour of novices differed
systematically, but did prove to be related to the amount of experience in
mathematics. University students with no mathematical background used abbrevia
tions and one-letter identifiers whenever possible, deteriorating the readabil
ity of their programs, and giving them the idea that they had only learned
tricks. Students with some years of mathematical education wrote programs which
were understandable and they mentioned having learned a useful way of attacking
problems from the programming course (Van der Veer, 1983). We found the time
needed for mastering the coding language to be positively related to the amount
of mathematical background, although students with or without a considerable
amount of mathematical experience did not differ in performance on programming
tests after the course.
Experience with a simple computer language designed in view of these results
showed that primary-school children are able to master the skill of coding,
using names that are workable to them and help them to remember the meaning of
identifiers and procedures, provided their creativity does not bring them to
choosing names with which the semantics associated are incompatible to the mean
ing in the program. Ina few cases they even show progressive refinement in con
structing the algorithm (Beishuizen and Van der Veer, in the press).

(d) Risk taking behaviour
The introduction of the computer as a new element in the learning situation may
induce new learning strategies. When given a choice between doing exercises,
examples or instruction, students showed a tendency to take more ri.s"s by
switching to exercises earlier than they would have done in the normal situa
tion, but because of this more time is spent practicing each unit. Especially
the less-talented pupils showed this behaviour. Their results and scores on
transfer tests are lower than in a setting in which the computer program
prevents them from making their own choices, using an educational decision model
instead (Bernaert, 1978).

(e) Heuristics and algorithms
Tutorial programs on problem solving either emphasise amore heuristic approach
or teach an algorithmic approach to certain problems. This last strategy always
leads to correct solutions wi thin the problem domain, but this gain is of res
tricted value. Transfer to problems outside the primary scope is facilitated by
using a heuristic approach, and in fact this method shows better results after a
time lag of some days toa few months, even on the original problem domain (De
Leeuw, 1983).

2.3. Cognitive styles

(a) Versatility

174

The cognitive styles that are developed from the conversation theory of Pask
(1976) were used extensively in our project. These learning style variables
have proven to be successful as predictors of learning behaviour in human
computer situations, Versatility (a flexible style in which a student may
choose between concentrating on a general overview or focusing on individual
operations) considerably facilitates the learning of a first programming
language. Another factor in this model of styles, the tendency to learn (the
amount of effort invested in collecting information), was related to the perfor
mance test which was given after a course in Cobol, predicting higher scores
even if general intelligence was partialed out (Van der Veer and Van de Wolde,
1984). Once a computer language is mastered, these individual differences seem
to be less important, but when problems of an obscure abstract nature have to be
solved, non-versatiles turn out to be disabled, a disability that disappears as
soon as an identical problem is stated in meaningful terms (Van der Veer, 1982).

(b) Field dependence
Toe tendency to actively structure the situation (field independence) without
being affected by irrelevant aspects in the environment (field dependence) is an
important determinant of problem solving behaviour. Field independent pupils
are able to utilise a learned method or strategy (be it heuristic or algo
rithmic) in new, related domains. Toey perceive analogies and differences
between old and new problem types, and they are more accurate in drawing schemes
as an aid in problem solving (De Leeuw, 1983). Field dependent pupils on the
other hand, need more assistance during the problem solving process, with levels
of feedback varying from very general remarks to problem specific hints. Facil
ities like this are difficult to provide in the traditional school environments,
but they can be provided in computer assisted situations, It is a feasible way
to impose additional structure on the environment in which the students work.

2.4. Personality factors

(a) Intelligence
Adaptation of the content and structure of the learning material to the level of
the pupil is the only ~ossible way weaker students can be given a fair chance in
education. Children with low scores on verbal and technical ability tests and
on tests for educational achievement were not capable of choosing -.an optimal
sequence of tasks within a learning environment, When the computer presented
tasks according toa didactic principle they spent more time practicing, scored
higher on a criterion test and they scored even better on transfer tests for
related new learning domains. When working without the computer's "guidance",
they risked too much by trying to do exercises at once, bypassing a sufficient
amount of instruction and without looking at the examples (Bernaert, 1978). But
even when coached adequately, the weaker pupils need more practice than do the
gifted, There are computer assisted learning situations in which intelligence
has no influence on the re sul ts, like learning to search in a database
(Beishuizen, 1984) with the help of a computer coach. When learning the posi
tion value of numbers with the help of computer exercises, we found no relation
between Raven-scores and the criterion test, although this relation is present
with paper and pencil exercises. In this case the weaker pupils showed consid
erable gain from practice with the computer, but hardly any gain from written
material (Kok, 1984). But these results cannot be generalised. In learning a
programming languages, there is a significant correlation between criterion
score and_intelligence (Beishuizen and Brazier, 1984), consistent with reports
on the Brookline LOGO project (Watt, 1979). Both in our project and the LOGO
project, however, even the weak students were capable of showing a certain level
of creative behaviour using a programming language, showing hidden talents that
remained unexploited in traditional classroom situations,

175

(b) Negative fear of failure
In everyday school-life this handicap is responsible for much disappointment,
frustration and, in the end, failure, From the start of our project a lot of
attention has been paid to this problem, especially to the question of how fear
of failure can be compensated, and how, using a systematic approach, it may even
be cured (De Leeuw, 1983). Extensively structuring the situation is one form of
compensation. Teaching an algorithmic approach, a method in which a solution is
found step by step, combined with the security of a valid solution, helps to
overcome the fear of failure, even in related problem domains, but only --if the
original domain was not too narrow. Students without this handicap profit more
from a heuristic approach. After a considerable time delay, in fact, a heuris
tic method gives the most stable results for all pupils. We are not too happy
with this conclusion: We can only compensate negative fear of failure for
closely related domains, fora short period of time. Another observation in t~e
same experiment is more profitable: students with negative fear of failure
needed more help to correct errors. If the computer program first presented
feedback consisting of very general remarks about the problem being considered,
presenting more specific information at a later stage, tne need for help
decreased. In this experimental situation we could say we had observed some
thing which could be referred to as a cure rather than a compensation. Another
positive effect of learning with computers is the lack of competition, so often
perceptible in normal classroom situations. The computer is a non-human object,
and pupils experience this as a safe situation, even when they are in fact keep
ing pace with other students.

3. THE COMPlJTER IN TIIB PRIMARY SCHOOL - A RESPONSI'IE ENVIRONMENT

To investigate the effect of computers in the school, we explored the situation in
the highest grades of 12 normal Dutch .primary schools. The age of the pupils in
this population is about 10 - 12. In this environment the educational goals are
changing more differentiation is being strived for within the class and more
attention is being paid to individual differences, These differences should be
observed to their full extent at primary school level, because the children are sent
to different secondary schools depending on their capabilities. Experience in pri
mary schools shows first of all that the introduction of new material can well be
left to the teacher. Tne computer is used for independent practice in a variety of
problem solving domains. It does not replace the teacher, but it is a device with
special qualities, a possibility to enrich the learning environment. In evaluating
its possibilities the researchers refrained from intervention in the teaching
method, apart from the introduction of a pupils programming language and a couple of
field experiments.

3,1. The "study machine"

The integrated system available enabled teachers to independently decide when, for
which pupils and for which task the computer was used. The "computer" as we pro
vided it for the school, consisted of one terminal, connected via a dial up tele
phone line toa system that was very easy to use (e.g. the Unix system was masked).
The time the study machine was in operation in the classroom varied between 1.5 and
16 hours a week, a student-session took between 10 and 30 minutes. The best place
for tne terminal turned out to be in the classroom. The teachers gave ideas for new
lessons, helped to define didactic aims and created exercises themselves, especially
in the domain of arithmetic, language and geography. In this way the study machine
developed into an environment within which simple exercises, structured learning
units, problems in the form of games, tests and a programming language are the ele
ments . Some teachers used the study machine for group-education, others for indivi
duals who needed special attention or for remedial aims.

176

(a) Arithmetic
Exercises in this domain are problem oriented: After an error the problem is
gradually divided into smaller units. The exercises are grouped into levels of
uniform difficulty and after every 10 items an overview of the results is given.
In some programs a recommendation is given about the best level to continue
practise. The domain includes simple operations like addition, subtraction and
division. For multiplication, proportions and percentages remedial use was
observed to be very successful. Exercises about linear measures were often com
bined with a lesson about their application. For exercises on the manipulation
of digits in numbers a field-experiment showed a considerable learning result,
that even after 5 months was still superior to the result of written exercises.

(b) Language
Tnree different template lessons are available in this domain. The teacher can
insert new material in a very easy way. Especially spelling exercises have been
very popular, mostly for remedial goals but sometimes in group instruction, A
considerable gain in learning has been observed. Together the teachers created
a total of about 150 different spelling lessons, but some teachers only used the
exercises their colleagues constructed, Some teachers even insert new lessons
which can only be used by a few pupils with special spelling problems.
A second template lesson provides the opportunity to create lessons in which a
pupil has to fill in the appropriate words, which can be chosen from a set of
words provided along with the exercise. In this way another 150 lessons were
written by teachers, about grammer and proverbs, Turkish-Dutch translation of
phrases, but also lessons about arithmetic problems, geography and history.
These types of template lessons were used quite frequently. More time was spent
using these two template facilities (with their many available exercises) than
on any other part of the study m«chine. Textual explanation is the subject of
the third template.

(c) Games
TI1e games in the study machine are included because of specific problem solving
behaviour required to win - systematic search within well-known domains such as
numbers, restricted by properties like primes, squares or divisibility. A
number of game lessons are constructed in levels that may be chosen according to
the problem solving behaviour of the student, sometimes done automatically by
the program, sometimes only in the way of an advise to choose another game.

(d) Tests
A special facility for administering educational tests is provided, enabling the
student to determine not only his own performance, but also the amount of cer
tainty and the reliability of his knowledge (Dirkzwager, 1975).

3.2. A programming language in the primary school

Based on previous experiments with programming language constructs and their rela
tion to individual differences, a programming language was defined that combined
neat con trol s tructures, readable naming, interac tive editing and automatic syntax
checking. A problem domain dependent standard prelude releases users from adminis
trative bother and provides the solution to detailed problems that are not relevant
to the pupil or the problem sol ving process. Learning the language with the help of
a written guide took 6th grade pupils 30 hours. Case studies have shown that stu
dents are capable of creatively manipulating with problems, just like Watt (1979)
found in the Brookline project. Coding is readily mastered at this age. Pupils are
able to produce examples and applications of syntactical concepts. The creation of
an original program of any volume however may be found with only a few gifted chil
dren. Tnis is in accordance with a recent statement by Weizenbaum (Foppema, 1983):
"A certain amount of maturity is a condition to create a real f>rogram. You will not
expect a 14 year old to do the job of an engineer".

177

3.3. Opinions and attitudes in the school

(a) Pupils
For several years running, a questionnaire was filled in by the pupils, tnat
showed a posLtLve evaluation of the computer as such. If it was left to the
students, they would spend between 2 hours a week to 2 hours a day (which they
are in fact never allowed by their teachers) working with the computer. The
student's positive attitude remains stable even once they are accustomed to the
situation having worked with computer up to 3 years. The most important argu
ments they mentioned were: when making an error one is not laughed at; feedback
is provided immediately and errors can be corrected right away; one can keep to
ones own pace; typing is preferred to handwriting (writing difficulties are the
cause of problems in a variety of other domains at school). During tne years
the arguments given to justify the preference for computer exercises shifted
from the arguments based on the learning gain expec ted to such arguments as "the
computer is pleasant AND instructive", and "one learns more in a pleasant situa
tion".

(b) Teachers
Arguments in favour of the use of a computer concentrate on one hand on indivi
dualisation, an approach which focuses on the pupil's weak points, and on the
other hand on difficult parts of the learning material. TI1e actual results can
never be fully credited to the computer. A computer is a tool, that rnay be use
ful in combination with other tools. Topics such as: improvement of spelling
and reading, a variable approach to learning material, the practise of standard
algorithms and the enhancement of motivation, are mentioned as positive effects.
Teachers observed that children are not afraid to make errors and that they sus
tain the search for solutions longer than in other situations.

4. REC0MMENDATI0NS AND C0NCLUSI0NS

Haylock(l983) posed three questions about the way in which tne present education and
the new technology interact:

(a) How the computer "can be used to do more effectively and efficiently what teach
ers are doing already by other means";

(b) "How they can be used to enhance the existing curriculum by making possible
learning experiences not previously practicable";

(c) "The possibility of new components on the content of the primary school curricu
lum".

Our project has tried, at least partially, to answer these questions.

4.1. The role of the teacher

The creation of a tutorial program is a specialist's job. Experience with an author
language or with a high level programming language is a prerequLsLte, as is either
knowledge of the learning material or the cooperation of an ex;iert. The ratio of
100 hours of development to one hour of tutorial program often stated is quite prob
able. In the primary schools there does not seem to be much need for this type of
C.A.I. Teachers do not need be replaced. Venezky(l983) mentions the "teacher
directed classroom", in which the computer is only an instructional tool, that
facilitates individualisation. Our observations confirm this idea: practise of
skills, problem solving exercises and the coaching of strategy development are tasks
which can and in fact do use computer facilities. Some tutorial aspects are recog
nizable in these programs, aspects which are relatively easy implemented e.g. in
arithmetic. The interaction in the case of language education asks for more
advanced design techniques, "Simple" solutions like multiple choice are not effec
tive.

178

A well chosen system does not require an intensive education of the teacher. Regu
lar contact with colleagues using the same type of system is very important and
leads to exchange of programs and methods.

4.2. Efficient applications

The most frequent task for which computers are employed in the primary school is
practising cognitive skills. Alternation with traditional means provokes motiva
tion, as does the direct feedback and the possibility to determine ones own pace.
The possibility to refine the "help" in phases is efficient for less skillful
pupils, e.g. in arithmetic.

Tuis "help" should not be thrusted upon a student. They themselves perceive its
usefulness "for certain mistakes". The best method is to give a pupil a second
opportunity to recover the error before the help is offered. Tuis enables the less
talented to learn from the exercises.

The arrangement of the exercises in levels enables the student to transfer to a
level of difficulty based on a diagnosis of his ability. Often the student will
decide what to do next depending on previous results, in other cases the teacher
determines the next level after evaluating the progress. A third possibility is to
leave the decision to the program. Although this seems to be very adaptive (to the
level of the student), it is not very transparent. The student might develop the
idea the computer is more "intelligent" than he himself is, or he might get irri
tated, because a fixed decision rule dominates human reason.

Template lessons that may be filled in by the teacher, are naturally simple in
structure and uniform in feedback. This appears to have been accepted; the pupils
themselves stated that the direct feedback and the possibility to correct mistakes
was the most important charac ter is tic of these programs. We observed that the
increase in learning confirms these statements.

4.3. Enrichment of the learning environment

In the traditional classroom situation only restricted possibilities are available
for the adaptation of the teaching strategy to individual differences. The applica
tion of a computer enables us to develop metnods based on cognitive psychological
theories.

Learning processes with problem solving aspects are best conducted with heuristic
strategies. Systematic assistance at the stage in which ~~at strategy is to be
discovered leads to long term gain and positive transfer to new problem domains. An
algorithmic method is only momentarily efficient but does not help a general
approach.

Individual differences between serialist and holist strategies, a task dependent
variable, may be compensated by adapting the teaching strategy of the program to the
student. When searching for information in a data base, for instance, the program
may determine the personal strategy of the pupil and coach him, if his behaviour
deviates, by advising what step should be taken next, thus improving the re sul ts.

Negative fear of failure may be compensated by providing help facilities that are
structured from general to specific. Gradually the pupil will develop independence
in the task domain. Field dependent pupils also profit from being given the possi
bility to structure the situation.

179

Independence in applying for help and in determining the order of exercises is a
useful aspect in the learning environment. But less talented children lack the
ability to know when and how much information they need. In that case a computer
program structured according to didactic principles is successful in guiding the
learning process whereas the more gifted children profit more from freedom.

4.4. New elements in the curriculum

(a) Lear'ning
A coding
enables
level.

a programming language
language structures the problem solving process and at
creative thinking, provided the student is allowed to

A number of conditions should be fulfilled,

the same time
work on nis own

- the programming exercises have to be meaningful: the semantics of the problem
should correspond to t.,,'le foreknowledge of the student;
- a standard prelude prevents administrative difficulties; most teachers rely on
a specialist to implement the domain specific elements for this prelude;
- The language will provide meaningful basic symbols, though pseudo-natural
language has to be avoided; assignments and initialisation should be conceptu
ally comprehensible to the novice; control structures should correspond to the
naive way of thinking of the student.
Languages like BASIC do not fulfil these demands.

(b) Searching for information
The computer can also provide facilities for students to become familiar in new,
for the student ill-structured domains: The skill of learning to learn will
increase in importance in the education of the future. An instructional data
base may be constructed with an efficient keyword structure. The importance of
taking notes should be stressed by the teacher. Tuis optimises the results and
prevents passivity. The structure in the database must provide opportunities
both for comprehension learners and for operation learners, to work according
their individual style.

(c) Games
Cognitive skills like structuring a set of elements and developing general rules
may be stimulated by well constructed computer games, in which the level of dif
ficulty may be either chosen by the student, with the help of an advise by the
program, or determined automatically, in order to optimise motivation and
effort.

(d) Self testing
n1e possibility to determine ones own level of knowledge and insight, and the
reliability of the results without having to depend on th~ teacher, promotes the
metacognition of the student.

REFERENCES

Beishuizen, J.J. (1984). Informatie verzamelen in een bibliotheek: coaching en
zoekstrategieën. Leren met computers in het onderwijs. Dirkzwager, A., Fokkema,
S.D., Veer, G.C. van der, Beishuizen, J.J. (Eds.). S.V.O., Den Haag.

Beishuizen, J.J., Brazier, F.M.T. (1984). Leren programmeren op de basisschool.
Leren met computers in het onderwijs. Dirkzwager, A., Fokkema, S.D., Veer, G.C.
van der, Beishuizen, J.J. (Eds.). S.V.O., Den Haag.

Beishuizen, J.J., Veer, G.C. van der, (in the press). Een responsieve leeromgeving
voor hoogbegaafde kinderen. Hoogbegaafden in onze samenleving. M~nks, F.J,,
Span, P. (Eds.).

Bernaert, G.F. (1978). Sturing in het onderwijsleerproces, cognitieve capaciteit en
leersituatie. S.V.O., Den Haag.

Dirkzwager, A. (1975). Computer-based
jective probabilities. Computers
North-Holland, Amsterdam.

testing with automatic scoring based on sub
in Education. Lecarme, 0., Lewis, R. (Eds.).

180

Foppema, R. (1983). Huiscomputers z1Jn niet nuttig. Trouw, 23 december 1983, 12.
Haylock, D. (1983). Computers and Children in the Primary School. Journal of curri

culumstudies, 15, 230-231.
Kok, E.J. (1984). Effectiviteit van computeronderwijs - getalstructuur. Leren met

computers in het onderwijs. Dirkzwager, A., Fokkema, S.D., Veer, G.C.,
Beishuizen, J.J. (Eds.). S.V . O., Den Haag.

Leeuw, L. de (1983). Teaching problemsolving: an ATI study of the effects of teach
ing algorithmic and heuristic solution methods. Instructional science, 12, 1-48.

Muylwijk, B. van, Veer, G.C. van der, waern, Y. (1983). Behaviour and information
technology, 2, 313-326.

Pask, G. (1976). Styles and strategies of learning. British Journal of educational
Psychology, 46, 128-148.

Suppes, P. (1979). Current trends in Computer-Assisted Instruction. Advances in Com
puters. Rubinoff, M., Yovits, M.C. (Eds.). Academie Press, New York.

Veer, G.C. van der (1983). Individual differences in cognitive style and educational
background and their effect upon the learning of a programming language. Psycho
logie des Programmierens. Schauer, H., Tauber, M. (Eds.). Oldenbourg, Wien.

Veer, G.C. van der (in the press). Learning style in conversation - a practical
application to man-machine interaction. Cybernetica.

Veer, G.C. van der, Wolde, J. van de (1982). Psychological aspects of problem solv
ing with the help of computer languages. Computers and Education, 6, 229-234.

Veer, G.C. van der, Wolde, J. van de (1984). Leerstijlen bij mens-machine interactie
een bewerking van de smokkelaarstest van Gordon Pask. Leren met computers in

het onderwijs. Dirkzwager, A., Fokkema, S.D., Veer, G. C. van der, Beishuizen,
J.J. (Eds.). S.V.O., Den Haag.

Venezky, R.L. (1983). Evaluating Computer-Assisted Instruction on lts Own Terms.
Classroom Computers and Cognitive Science. Wilkinson, A.C. (Ed.). Academie Press,
New York.

Watt, D. (1979). Final report of the Brookline LOGO project, part III: Profiles of
individual student's work. M.I.T., Cambridge, Massachusetts.

INTERFACES IN THE FIELD

A REALISATION OF A HUMAN-COMPUTER INTERFACE FOR
NAIVE USERS - A CASESTUDY

Günter Haring, Tneodor Krasser

Technische Universität, Graz
Austria

The realisation of a human-computer interface for an information storage and
retrieval system used by the staff of a company in mechanical engineering industry
is described in this paper. The system had to be designed according to the needs,
skills and data processing background of tnis user group, taking the tasks to be
performed into consideration. TI1e system design process, based on human factor
design goals and integrating quality control, is compared with the usual software
development procedure. Tne description of the system explains the way in whicn dif
ferent dialogue tools such as menu selection, form filling, function keys etc. nave
been integrated. Data entry and query functions are used as examples.

1. INTRODUCTION

The staff of a company with activities in design and development of internal combus
tion engines was faced with a rapidly increasing amount of information on engines
(mostly test results), which needed processing. An information storage and
retrieval system in which the results of previous developments were stored, was
developed to reduce the cost of improvements and development and to specify require
ments at the beginning of each new project. For the realisation of the system the
programming language FORTRAN 77, a forms management system, and an interactive query
and reports system with a call interface for FORTRAN-programs, were available.
Nearly all members of the staff, who were to use the system, had little or no
knowledge of data processing (naive users). Toey wanted to be able to use the
information storage and retrieval system as a tool for solving their problems
without having to invest much time and effort. The theoretical justification of a
system as such (in which the user's skills and requirements were taken into con
sideration) will now follow.

2. DESIGN GOALS

The aim and purpose of a design process is to develop a software-technical solution
to the problems which arise when the user's requirements are to be translated into
concrete facilities within the software product (Balzert, 1982). Because the types
of users and the tasks they wish to perform differ from system to system, system
designers must have a thorougn understanding of the needs and skills of the users
and the tasks that must be accomplished (Snneiderman, 1983). In principle we can
divide the design goals into two categories: primary design goals and human factors
design goals.

7
1

183

2. 1. Primary design _goals

The primary design goals are
- to ascertain the correct fu.nctioning;
- to ensure reliability;
- to be on schedule and within the budget (Shneiderman, 1983).

(a) Functioning
Most of the system activities occur at alevel unknown to the users. Tne user's
knowledge of the system is limited to the set of functions visible at the inter
face level. The system designers must analyse the user's image of the task
before correct fu.nctioning can be guaranteed. Tasks frequently executed are
easy to detect, but it is often a problem to discover occasional and exceptional
tasks. One has to avoid not only inadequate fu.nctionality but also confusing
excessive fu.nctionality (Shneiderman, 1983).

(b) Reliability
TI1e software architecture and hardware support must guarantee, that the system
is accessible at any time when the user needs it. Furthermore maintenance must
be easy and performance should be correct. Tne user must be informed on all
effects of his input to the system and the system must have a chance to continue
without proble·ms. Important questions concerning data protection, security and
information integrity are also related to reliability (Shneiderman, 1983; Dehn
ing et al., 1982; Date, 1976).

(c) Observance of fixed dates and budgetary plans
Toe third primary design goal is to be on schedule and within the budget.
Exceeding terms and costs may, as Shneiderman points out, enrage the potential
users and may result in their total rejection of the system.

2.2. Human factors design goal

The primary design goals having been described, our attention can be focussed on the
design goals concerning human factors. They include:
- a user interface, that is adapted to the user group with on-line help and function

keys;
- ease of use and ease of learning;
- user friendly error handling;
- response time requirements;
- data representation.

Tnere are examples of clever designs for communities of users which may be inap
propriate for other commu.nities. This implies the importance of an adequate inter
face for specific user group.

2.3. Man-machine interface

When designing the interface the dialogue style (natural language based, command
language, form filling, menu selection), function keys, on-line help,
(error)messages and display of messages and output of data should be considered.
Tuis chapter describes the theoretical background of the man-machine interface
characteristics, which were relevant to the system we have developed.

2.3.1. Menu selection and form filling

TI1e user has to select one of the possibilities the system offers (menu selection)
or has to fill in the blank s·paces of skeletons with the required data (form fil
ling). These types of interaction are mainly machine initiated. Tne advantages of
these types of interaction are:

184

- the user is guided by the system, tne time to learn is short;
- it is easy to recognise which functions are available;
- it is obvious which values are required by the system;
- syntax errors are avoided;
- if there is a mask and menu management system, program code is drastically reduced

(Fischer and Zeidler, 1982; Quiniou and Saint-Dizier, 1982).

On the other hand there are some disadvantages:
- it is difficult to propose items which semantically correspond to those intended

by the user;
- the dialogue is statie and sometimes very long;
- there are only a limited number of responses available;
- complex menus may confuse the user;
- there is no j>Ossibility to combine commands (Fischer and Zeidler, 1982; Quiniou

and Saint-Dizier, 1982).

Tne following points should also be taken in consideration with form filling and
menu selection:
- if the structure of the problem is well understood, the menu structure should

represent this;
- the direct choice of frequently used functions should be possible;
- ·.ise a menu hierarchy to structure a large number of choices;
- it must be possible to go back to the previous menu if the selected menu was

selected by mistake;
as a rule one menu contains five to nine cnoices; but don't split up natural
groups (e.g. twelve months);

- the last entry selected should be on the first line of the new menu;
- it must be easy to distinguish between the different entities;
- it must be easy to move from field to field in forms;
- the forms indicate the expected format for the values;
- menus and forms should be independent from program code to allow an easy adapta-

tion to new requirements (Brown, 1982; Nagler, 1982; Miller, 1956; Schmidt, 1983).

2.3.2. Function keys

Toe user has the possibility to select frequently used functions by typing a key on
the keyboard. Examples are cursor manipulation, editing functions and the HELP
function. The advantage of tunction keys is that they reduce the amount of time
spent typing. On the other nand the user has to keep in mind the position of the
keys and the ir func tions. Only a small number of func tion keys should be used to
avoid the user having to remember too many keys at once and thus wasting time
searching for appropriate keys. He must be able to obtain a list of the correspon
dence between functions and keys. The function keys should be software controlled,
so that this correspondence can be reprogrammed when required. The user should be
able to define nis own function keys. It should also be possible to per form a func
tion by entering a command name instead of using the function key.

2.3.3. Help functions

Help functions provide on-line help in case of difficulties. These may be asked for
by thP. user or be given automatically by the system (Dehning et al.,1982).

2.3.4. (Error)messages

After the operator has fed input into the system, the system should always respond
so that the user knows that nis input has really travelled all the way to the com
puter (Martin, 1973). Very important are messages which indicate an error. The
system designers should make sure that error messages have a positive emotional
tone. Tne error message should not make the user feel guilty. It seems very

185

important that the message should describe
able to recognise the reason for the error,
to continue (Ledgard et al., 1981).

the error in detail, so that the user is
The system may also inform the user how

2.3.5. Display of messages and output of data

In principle output can be done in speech form, in text form or in graphic form.
Output in speech form can only be used in a limited nUJJ1ber of cases, usually with
fairly restricted possibilities for the user (Nes, 1982). The most commonly used
output medium is the video screen. It is used for the display of system messages
and for output of data, It is important for the user to discern the different out
puts (messages, results, help information). Tuis can be realised either by using
different letter types (upper case, lower case, different distances), or by parti
tioning the screen into different regions, or by using the video functions of the
screen, For tne representation of results the system designer should consider the
following aspects:
- the output should be self-descriptive;

the vocabulary should be consistent with natural language, using common abbrevia
tions and with input vocabulary;

- avoid words and special characters which may not be known to the user;
- avoid irrelevant information;
- choose a problem specific representation of the information, using as few objects

as possible;
- find a clear and structured arrangement of information. It must be possible to

recognise the most important parts immediately;
- erase information from the screen when it is no longer needed.

For large amounts of information the system designer must also consider the follow
ing:
- the user has the possibility of selecting the data he wants to see;

there are facilities to interrupt, to continue and to cancel the output;
- the user decides when he wants to see the next unit of information;

use scrolling techniques and paging;
- allow the user to select the output device, Often it is desirable to have an out

put listing on paper;
- if possible, use graphical output facilities.

In this chapter we have defined some design goals and
machine interface for naive users. In the next chapter
question of how these design goals can be achieved.

3. SYSTEM DEVELOPMENT

cnaracteristics of a man
we will be interested in the

The system designer must develop the system taking the needs, skills and data pro
cessing background of the user group and the tasks they want to perform, into
account, to achieve a satisfying solution for the software system. We will use the
following phase division of the software life cycle (Balzert, 1982) to compare the
usual software development procedure with a system design process which integrates
quality control and a model of the human user:

l. system planning

! 2. definition
3. design
4. implementation time

5. installation and acceptance
6. maintenance routine

186

3.1. "Common" process of system development

s
u

u,
ll.ESTIONS.
1A&.EREWJRE
'EHTS. (l!IE!

SPECIALIST
USER

SYSTEl>
PI.Jltl!H6

s,
Rru6fiREWIRE
tefT CATA-
1.ll61.E. !ll!N-
FU<CTIONS

u,
IEWlfEtEHTS

DEFINlTICJt

s,
REW!RE!ENT
CAT!l.OGl.E,
-..il.

IESISN

JIR0EfTATIOH

s,
'f'ERIFICATION +
TEST

u,
lel:R (F
TIE SYSTEH

Figure 1 "Common" process of software-system development.

The common process of system development and tne role of the user is shown in figure
1. Persons, who want to solve a problem with computers consult DP-specialists.
îhey cooperate during the system planning phase, check the feasibility, define a
rough list of requirements and the main functions based on the - often vague - ideas
of the potential users. In the design phase these documents and an exact analysis
of the requirements lead toa complete list of requirements and a manual witn the
functional description of the system. Later the requirements are transformed into a
software-technical design, which is implemented and tested during the implementation
phase. In the installation and acceptance phase the users (and their ideas of the
system) are confronted with the real system. In this process the linear flow and
tile liinited communication with the user are disadvantageous. Often system designers

187

have difficulty cooperating with users wnose ideas
lack of communication and the late quality control
software development cause the late and therefore
misunderstandings.

are rather vaguely
by the user at the
expensive detection

defined.
end of

This
the

of errors and

3.2. System development integrating a model of the user and quality control

u,
USTIIJIS ,
l'R6tE REOJIRE
IEHTS, OROO!

S SPECIALIST
U USER

Figure 2

,,
IQ.GI REOOIRE
UI' CATA
LOGI.E , ~IN
FOCTIIJIS

u,
!Elllf9ENTS

System development
integrated quality
users.

OEFIHITl(JI

as an
control

u,
HEI IF
SYSIDI

iterative process
and integration of

with
the

IHSHWlTJ(JI
<Ml

ACCEPTIKE

188

Apart from this disadvantage and the aim to achieve the design goals there are also
organisational changes, that are necessary for system development and installation,
which requires the integration of the users in the system development process.

Figure 2 shows the system development procedure integrating quality control and a
model of the user, In contrast to the "common" process, the re sul ts are checked
after each phase, If the results don't stand the test the phase will be run through
once again. The check is done by both the specialist and the user, In addition to
the known methods for getting to know the user's wishes, such as interviews, ques
tionnaires and analysis of these parts of the process that have defined, two methods
should be mentioned:
- user model,
- preliminary prototype models.

(a) User model
The system designer develops a model of the user, that is based on past ex?eri
ences with the user. With this model they consider those fields of planning and
execution, which should really be controlled by the user (Dzida, 1982), The
following aspects have to be considered when constructing a consistent model:
- the needs and skil ls of the user and factors, that influence their behaviour;
- ~1e user's view of the problem;
- peculiarities of the problem;
- JclOssibilities for designing the man machine interface (Nagler, 1980).

The model only considers those aspects of input/output behaviour, which are
relevant for the user, and those functions which the user knows of (Nagler,
1982).

(b) Rapid prototyping
The list of requirements and the manual supply insufficient information about
werking with the system, It is therefore important to make a "complete" system
availab le to the users to enable them to elaborate and correct their view, by
using the system. This can be done by creating rapidly prototype models, which
can be seen as apart of tne design process. Only the functional characteris
tics of the prototype are important, whereas inefficient computer performance
and memory al location are insignificant.

4. THE ACTUAL SYSTiM

During tne development of our information storage and retrieval system for
data, the model of the user as well as quality control during all phases
software life cycle, were taken into consideration.

4.1. Description of the data structure

engine
of the

A relational data model of the engine data was the basis for the application
oriented data structure. In principle it distinguishes two structures:
- tables;
- data files.

All characteristic data for the internal combustion engine (that may be of impor
tance for queries) are represented as values in tables. Further information, espe
cially test results, is stored in data files. For each data file there is an entry
in a table linking the data file toa specified engine. TI1ere are also links
between different tables, but the user need not be aware of these links.

189

4.2. Functional description

Tuis structure and the tasks that the user wants to perfona required the following
functions:

functions for data storage and update in tables;
- functions for information retrieval;
- functions that allow the manipulation of data files.

In detail this can be split up into eight main functions:
- insert a row in a table;
- modify a row in a table;
- delete a row in a table (and all the corresponding links);
- define and execute a query;
- execute a predefined query;

getand convert a data file (to use the data for further computations, to plot
diagrams or to print the results);

- put a data file;
- delete a data file.

4.3. Interface description

In our application the most appropriate dialogue style for an interface seemed to be
menu selection and form filling, because a machine initiated interaction satisfies
the needs of nearly all the users, who prefer to be guided by the system, want to
minimise the learning time and expect the system to prohibit them making errors (see
1 and 2.3).

After starting the system a menu with the eight main functions is shown to the user.
By typing the number corresponding to the function the user selects the option. All
other functions and forms use the right upper corner of the screen to display the
function last selected. Every field shows the maximal length of the input value and
every input is checked immediately if possible. If the execution of an action is to
last longer than a few seconds the user receives the mess age "sys tem working".

For the function "INSERT A ROW INA TABLE" the user must specify a table and he may
also specify a row identification. If he specifies a row identification the new
record is initialised with these values. Tne user has to fill (or modify if he has
initialised the record) the fields of the forms displayed.

For the function "MODIFY A ROW INA TABLE" the user must specify both the table and
the row identification. Toe corresponding values are shown in forms and the user
can update the distinct field values.

For the func tion "DELETE A ROW IN A TABLE" the user must again specify table and row
identification. T.1e specified record is shown to the user and he must verify want
ing to delete the record.

Once a table has been specified it is used as the default value for further actions.
The user can use the function keys of the keyboard for manipulating data in tables
and for other functions. The following functions are available:
- move cursor one position to the right in the current field;
- move cursor one position to the left in the current field;
- move cursor to next field;
- move cursor to previous field;
- move cursor to first field of form;
- move cursor to last field of form;
- previous form;
- next form;
- first form of a logical record distributed over some forms;

190

- last form of a logical record distributed over some forms;
- delete field value;
- undelete field value;
- refresh screen;

help to get more information about the current input field and the meaning of the
function keys;

- command to interrupt the current function.

The function keys are software controlled, but the user is not able to define his
own keys.

For the definition of a query the user gets a form and he has to enter:
- mode (batch or interactive);

table(s), that contain values that shall be compared or printed out;
boolean expression;
name of the fields (attributes) for which the user wants to see the values (the
names of the field are the same as in the forms for data manipulation, for every
field there exists also a short name);

- output unit (terminal, file, line printer).

To define a boolean expression the user must specify:

field name, relational operator, argument list
[,boolean operator (and/or), field name, relational operator, argument list]

The square brackets indicate, that the expression may occur zero or more times. If
the first field name is blank, the whole table is selected.

When the user selects the function "EXECUTE A PREDEFINED QUERY" a menu with tnese
queries is shown to nim. Toe system prompts for the necessary parameters depending
on his choice.

For the file handling functions the user has to enter an input file name. For "GET
FILE" and "PUT FILE" he can also specify an output file name, otherwise a default
file name is used.

5. CONCLUSIONS

We have described the realisation of a man machine interface of an information
storage and retrieval system, (mainly) used by naive users. We have presented a
number of design goals and have focussed our attention on the requirements fora man
machine interface for naive users. Furthermore we have given an overview of the
system design procedure, in which the model of the user and quality control are
integrated into all phases of the software life cycle and we have compared this pro
cedure to the common process of system design. Finally we described the main
characteristics of our system.

REFERENCES

Balzert, H. (1982). Die Entwicklung von Software-Systemen (Prinzipien, Methoden,
Sprachen, Werkzeuge). Reihe Informatik 34, Bibliographisches Institut, Mannheim.

Brown, J.W. (1982). Controlling the Complexity of Menu Networks. Communications of
the ACM, 25, 412-418.

Date, C.J. (1976). An Introduction to Database Systems. Addison-Wesley, Amsterdam.

191

Dehning, W., Essig, H., Maass, S. (1982). The Adaptation of Virtual Man-Computer
Interfaces to User Requirements in Dialog. Springer Verlag, Berlin.

Dzida, W. (1982). Dialogfähige Werkzeuge und arbeitsgerechte Dialogformen. Informa
tik und Psychologie. Schauer, H., Tauber, M.J. (Eds.). Oldenbourg, Wien.

Fischer, H.G., Zeidler, A. (1982). User Friendly Interaction with an Integrated Data
Base Information Retrieval System. Zurich Seminar on Digital Communications
(Man-Machine Interaction), IEEE Cat. no. 32CH1735-0, 153-158.

Ledgard, H., Singer, A., Whitside, J. (1981). Directions in Human Factors for
Interactive Systems. Springer, Berlin.

Martin, J. (1973). Design of Man-Computer Dialogues. Prentice-tlall, Englewood
Cliffs.

Miller, G. (195ó). The Magical Number Seven, Plus or Minus Two: Some Limits of Cap
ity for Processing Information. Psychology Review, 63, 81-97.

Nagler, R. (1980). Entwurf und Realisierung von Dialogsystemen. Dissertation, Wien.
Nagler, R. (1982). Entwurf benutzerfreundlicher Dialogsysteme aus der Sicht men

schlicher Informationsverarbeitung. Informatik und Psychologie, Schauer, H.,
Tauber, M.J. (Eds.). Oldenbourg, Wien.

Nes, F.L.van (1982). Perceptive, Cognitive and Communication Aspects of Data Pro
cessing Equipment. Zurich Seminar on Digital Communication (Man-Machine Interac
tion), IEEE Cat. no. 82CH1735-0, 259-262.

Quiniou, R., Saint-Dizier, P. (1982). Man-Machine Interface for Large Public Appli
cations. Zurich Seminar on Digital Communications (Man-Machine Interaction),
IEEE Cat. no. 82CH1735-0, 147-152.

Schmidt, E. (1983). Computer sollen menschenfreundlich werden. Computerwoche 1983,
21, 20 Mai.

Shneiderman, B. (1983). Human Factors for Interactive Software. Enduser Systems and
Their Human Factors. Blaser, A., Zoeppritz, M. (Eds.). Springer, Heidelberg.

REAL TIME GRAPHIC SIMULATION10F VISUAL EFFECTS OF
EGOMOTION)

Patrick Peruch*, Viola Cavallo*, Christian Deutsch+, Jean Pailhous*

*Laboratoire de Psychologie de l'Apprentissage, Marseille
+Sociètè Opeform, Malakoff

France

Both spatial displacements and their visual consequences which allow analysis and
control of trajectories are now an important research topic. This activity plays a
large role in our everyday life and soit largely exceeds the preoccupations of cog
nitive psychology: for example, it poses some problems for the ergonomist who has to
elaborate graphic job-aids for manoeuvring large ships.

We present 3 important aspects of our method:

(a) A multi-disciplinary team (mathematics, software engineering, ergonomics, cogni
tive psychology) works on a collective project.

(b) We have constructed a model of the mental (cognitive) processes involved in this
task.

(c) We have produced dynamic images in real time with a computer and graphic
display; we have simulated some aspects of active movement in definite spaces.

1. INTRODUCTION

At present much applied research is concerned with visual control of displacement,
and in particular with situations in which man is transported. In this type of
situation vision is most important because it is the main modality for spatial data
processing. Visual information caused by displacement includes information about an
apparent motion of the surrounding space elements. Several authors (Gibson, 1950,
1979; Gordon, 1965; Lee, 1974; Nakayama and Loomis, 1974) have described these "opt
ical flow properties", related to the trajectory. Bonnet (1975) described two sys
tems: a "Motion Analysing System" (MAS), and a "Displacement Analysing System"
(DAS). Both systems are applied to high velocity motion, whilst information on both
acceleration and deceleration, and on modification of the trajectory are supplied by
the vestibular system. Car driving is a good example of this situation. At low velo
city, only positional information (supplied by the DAS) is available and can be used
to discover the trajectory properties. In such a situation, maritime navigation is
an example, the amount of data available is not sufficient for displacement
analysis,making calculations from spatial positions necessary. Another example is
the minute hand of a clock which seems motionless but even so changes its position.

We will now approach the question of large ships manoeuvring in harbour areas. In
such places the difficul ty of controlling the trajec tory is mainly due to the nar
rowness of the channel, the streams, the inertia and the lack of manoeuvrability of
the ship. TI1e navigator needs dynamic data about the ship trajectory, which he can
not obtain from statie job-aids (maps, nautical instructions, maritime buoyage sys
tems). Some studies on work analysis (for example, Brouard et al., 1979) have shown
that radar can be useful, but the indications which are used to control the trajec
tory are mostly deduced from the apparent transformations of the surrounding space.
Each type of movement (translation, rotation and their combinations) induces

193

characteristic modifications of the visual scene, As a matter of fact, pilots in
training are taught to use these indications efficiently: precise data on direction
and speed can be given only by considering the sequence of the images. The use of
these geometrie optical transformations, these "spatial consequences" of dis place
ment (Pailhous and Cavallo, 1982), is essential during night-navigation; most depth
perceptual indications are not available: there are perturbations of shapes and
apparent size perception, and no gradient of density of texture. The more the con
straints increase (in situations such as supertanker piloting, night-manoeuvring,
bad meteorological conditions, and so on), the better adapted job-aids are to facil
itate, or even permit large ship navigation in harbour areas. We took part in a
research program, the purpose of which was two-fold:

(a) to evaluate the interest in the use of radio-electrical aids;
(b) to develop new modes of presentation of data which would add to or even replace

the usual visual aids.

Tnis research program is now in the experimental stage.

2. RESEARCH PRESiNTATION

2.1. The model

One way of studying human behaviour in work situations consists of constructing a
model of mental (cognitive) processes and of simulating them within experimental
situations. In our case, we were rapidly confronted with the use of computers and
the need fora multidisciplinary team, with psychologists and mathematicians on the
one hand and software engineers and ergonomists on the other. Collaboration of
mathematicians and psychologists (specialised in spatial data processing study)
facilitated the modelling of mental activities. Software engineers and ergonomists
could then concretise the results of these fundamental studies, producing software
to help pilots.

The experimental apparatus we used consisted of a Hewlett-Packard 9825 computer and
a graphic display. The real time program showed a scene simulating some aspects of
active driving in definite spaces. The simulated displacement took into account both
the ship inertia, and the stream and approximations of the port radio-localisation
system. The subject was seated in front of the screen and gave instructions about
the modifications of direction and speed which were thereupon executed by the exper
imenter via his computer keyboard.

2.2. Simulation characteristics

When choosing the dynamic presentation to be used for spatial data, we took some
psychological aspects into account.

(a) If spatial data are to be processed (as is the case in this displacement regula
tion), we know that analogie presentation of information is simpler and more
reliable than digital presentation: it is easier to process spatial data in a
visual mode than in an alphanumeric one. Moreover, in a continuous process such
as ours, the importance of the temporal parameters makes this presentation more
efficient.

(b) When concerned with the amount of information to be processed the tendency is to
try to achieve "realism" and w'tus exhaus tivity (for example in Computer Aided
Design). We are also aware of opposi te tendency, in which only "just necessary"
information (from the analyst's point of view, of course) is presented. From
our point of view, both of these extremes are naive and biologically

194

wiscientific: the real problem is to present the human operator with isomorphic
situations for his processing methods, The extraction of the most relevant cues
(which is very difficult for the operator to do without any assistance) i~plies
a certain amowit of modelisation of these processing methods. This type of
schematisation should be dis tinguished from the schematisation of men tal images
(Piaget and Inhelder, 1966) or from the schematisation of operative images
(Ochanine, 1964) involved in cognitive regulation of action, and planning in
particular. It is now well known, that mental images have the fwiction of sim
plifying or even modifying reality, and as such can easy be used by the opera
tors.

(c) The last aspect concerns the content of the graphic information. A continuous
process is characterised by the continuous variations of the motion parameters.
Therefore (and this remark is related to the first), cognitive processes are
more easily used on states than on transformations. We are therefore encowitered
with the problem of needing discreet units for optimally continuous processes,
to make the state sequencies compatible with the processing (principally from
the temporal point of view) on one hand, but not modifying the processes on the
other. This question is of much importance in this type of situation. Tnus we
did not construct driving simulations with slow continual motion, but we used
position sequencies, with an image change about every 3 seconds.

3. ILLUSTRATION OF OUR METHOD - EVALUATION OF 2 MODES OF PRESENTATION OF GRAPHIC
INFORMATION

3.1. Aim of the experiment

Dynamic aids, in maritime navigation, generally take two different modes of ship
evolution into accowit: the alphanumerical (digital) mode, with parameters for
speed, helm, heading, and so on; the analogical mode, such as the cartographic view
of the radar screen, The data supplied by these aids are used in addition to the
navigator's direct observations of his surrowidings although the two may clash. We
have therefore considered the importance of evaluating the respective quality of
these different modes of data presentation in the same task, and of comparing
graphic modes.

In this context, Bertsche et al. (1980) simulated ship steering in a curved channel,
with three different modes of data presentation. Tney called them: digital, graphic
(near the radar screen), and perspective. D1ey obtained the following results: the
quality of the trajectories derived by the graphic presentation was the best; per
spective presentation led toa slight difference in performance although the ship
did remain in the channel; whilst digital presentation, re sul ted in numerous "bad"
trajectories (leaving the channel at the bend). These results show the graphic modes
(graphic and perspective of the authors) to be superior, Tuis fact is probably due
to the similarity of this presentation with cognitive processes which are involved
in spatial data processing. Therefore, neither of the authors took the subjects'
processing methods into accowit; nor did they try to combine the different modes of
presentation. D1us, we reconducted Bertsche et al. 's experiment, combining each
graphic mode of presentation with digital data.

3.2. Description of the experiment

We simulated the steering of a ship in the channel of Antifer, which is Le Havre's
oil terminal. Tuis channel is 30 kilometres long, but the experiment was only con
cerned witn the first bend area: each simulation lasted about 20 minutes. Toe start
ing point was always the same: at the North of the mid-channel line. Tuis experiment
allowed us to compare 2 modes of graphic data presentation: cartographic mode and
perspective mode (see Figure l); 3 groups of subjects: non professionals, pilots
from Marseille and Le Havre; 2 conditions of stream: strong or weak. The subject was

195

always given digital data, and shown only one graphic mode of presentation, He car
ried out 2 trajectories under each condition of stream, but when starting he did not
know their characteristics: he had to steer the ship in the best way possible.

YJTI- 111
AU.LIE 1 7
CM' 111 4
.._ Il

•o.:NT 1
(·•• L , ..
•TA ·11

Figure 1 The computer screen with the data presentation modes.
In the lower part (cartographic mode) the northern and
southern limits of the access channel to Antifer port
are shown by lines with the buoys; the mid-channel line
is also drawn; the vessel is represented by a small
mobile segment.
In the upper part the channel is represented by a per
spective mode, wnere the vertical line corresponds to
the bow of the ship, this is fixed in the centre of the
screen.
The alphanumerical information concerns the bridge
parameters (speed, rate, heading, helm) and the steer
ing parameters of the Radio Electrical Aid System;
these are: the segment number, the distance from ruid
channel, the dis tance to the following couple of buoys,
drift angle.

This type of experiment allows us to compare two modalities of displacement percep
tion and control. One of them does not exist in everyday life: in the cartographic
mode, the subject sees himself moving in the space, This "decentralisation"
phenomenon, however, does occur in localisation tasks for instance, where the sub
ject has to designate his location on a map (Peruch, 1980). Since the graphic mode
of presentation supplies fairly complete information about the surrounding space,
the anticipation of the trajectory can be facilitate. On the other hand, the per
spective mode of presentation gives amore realistic visual field, but more sensi
tive to variations; moreover, the similarity of the presentation with the scene from
the bridge can render it more compatible with cognitive processes involved in tra
jectory control.

196

3.3. Principal results

Tne subjects' performance in controlling the ship's displacement was described using
certain parameters which were supplied by the 2 software packages. The first, worked
on the experimental computer (Hewlett-Packard 9825), and allowed us to plot the
graph of the paths of a definite sample; the second, using a Hewlett-Packard 9845
computer, produced statistical and graphical results necessary for the analysis of
some factor effects, We have chosen to discuss the results concerning the two
"extreme" groups: non-professional subjects, and pilots from Le Havre-Antifer.

3.3.1. Performance analysis

non-professional professional (pilots)

Figure 2 Examples of trajectories (non-professional subjects and
pilots of Le Havre). The part of the channel in the
experiment (first bend area) has been enlarged.

Trajectory paths (see Figure 2) were more regular and less dispersed for the pilots:
their ability to extract relevant cues allowed them to anticipate manoeuvring and
therefore to steer the ship correctly through the trajectory. This was not the case
for the non-professional subjects who were more or less spectators of the conse
quences of their manoeuvring, and often could not avoid leaving the channel. The
perspective one was nowever the most efficient of the different modes of presenta
tion. We have shown that it is important to give presentations isomorphic to human

197

processing methods. Although within this mode of presentation few indications are
given to the operator, it facilitates his anticipation of the trajectory, and it
allows the use of speed gyration: speed is perceived by the perspective mode and at
the same time its value is supplied by the digital mode. The superiority of the per
spective mode of presentation found here, can be explained by the fact that the data
available to the operator are more complete due to the association between the other
modes of presentation. Most subjects were upset by the effect of the stream, though
it did not affect the ship manoeuvring capacities (because its action is reduced to
a translation movement); the pilots of Le Havre who knew tne harbour were less dis
turbed than the other subjects and were capable of correctly anticipating the
effects of the stream .

3.3 . 2 . Manoeuvring relevance
12 l

106 :
··· ················•· . .. ·· ··v··· ······· ··· ·· · ··•··•····· ·· ··~is···. . . .,.

7 -------- : ·. :·

®

@

Figure 3 Channel "exit time" (in seconds) for two different sub
jects. The thick line corresponds to the trajectory
actually carried out.

The subjects steered the ship by using helm and speed instructions, which were then
simulated by the experimenter using his computer keyboard. A good estimation of
manoeuvring relevance was, for example, the number of instructions necessary to keep
the ship in the channel; figure 3 shows the variability of this number between the
different trajectories the subjecte produced: some of the subjects (see for example
Figure 3b) used three times as much instructions as others (see for example Figure
3a). It was also possible to calculate how long the ship should have remained in

r

198

the channel if an instruction had not been given: the gain ratio of an instruction
is given by the relation between the "exit time" of 2 successi'1e instructions. Tuis
ratio depends mainly on the ship's position in the channel, and is relevant to the
anticipatory quality of an instruction in relation to certain spatial constraints.
The exit times are indicated on t..~e paths corresponding to each instruction.

4. CONCLUSIONS

The experimental apparatus allowed us to evaluate the perspective mode of presenta
tion, comparing it to the cartographic mode. Ina simulated situation (where only
apparatus data were presented), this mode of presentation appeared to be superior
and seemed thus to be of considerable interest as a job-aid: data presented by per
spective mode were isomorphic and thus compatible with data directly perceived from
the bridge. By its simplicity (coding of relevant features only) and its similarity
to the external space, this mode of presentation can really help the operator to
"read" the surrounding space. The superiority of the perspective mode of presenta
tion urges us to go on using it in our new experiments. By identifying the process
ing methods and their adequacy in solving the task, we will be able to anticipate
the problems encountered by pilots. It will then be possible to prepare more com
plete training courses, and to include this new job aid into ships and data systems.
These conclusions, of course, are not directly transposable to field situations;
other studies using these results will be necessary.

As a last point, we want to emphasise the interest of using computer systems in
large ship manoeuvring simulations. These systems are not so expensive and can
easily be transported to the ships bridges. Moreover they can become good job-aids:
they facilitate the operator's diagnostic, giving him information he is not always
able to extract directly, and they also supply him with information about future
states, helping him to anticipate decisions.

FOOTNOTE

1) Tnis work was supported by a research agreement between the Laboratory and
Sociètè OPEFORM.

REFERENCES

Bertsche, W.R. ,Cooper, R.B., Feldman, D.A., Schroeder, K.R. (1980). An evaluation of
display formats for use with marine radio navigation piloting systems. United
States Coast Guard. Washington D.C.

Bonnet, C. (1975). A tentative model for visual motion detection. Psychologia, 18,
35-50.

Brouard, J.,Deutsch, C., Routin, M., Cuny, X. (1979/1980).
l'analyse de la conduite: l'exemple du pilotage portuaire.
gie, 33, 263-272.

Etapes prèalables à
Bulletin de Psycholo-

Gibson, J.J. (1950). The perception of the visual world. Houghton Mifflin, Boston.
Gibson, J.J. (1979). The ecological approach to visual perception. Houghton Mifflin,

Boston.
Gordon, D.A. (1965). Statie and dynamic visual fields in human space perception.

Journal of the Optical Society of America, 55, 1296-1303.

199

Lee, D.N. (1974). Visual information during locomotion, Perception: Essays in Honour
of James J. Gibson. R. Me Leod & H. Pick Jr. (Eds). Cornell University Press,
Ithaca, New York. 250-267.

Nakayama, K.,Loomis, J.M. (1974). Optical velocity patterns, velocity sensitive neu
rons and space perception: a hypothesis. Perception 3, 63/80.

Ochanine, O.A. (1964). L'acte et l'image, problème d'ergonomie. XVIIe Congrès Inter
national de Psychologie Apliquèe. Ljubljana. 81-88.

Pailhous, J.,Cavallo, V. (1982). Les effects spatiaux du mouvement: leur role et
leur traitement. L'Annèe Psychologique, 82, 457-472.

Peruch, P. (1980). Localisation et orientation du sujet lors d'un dèplacement: ètude
de la performance. L'Annèe Psychologique, 80, 449-465.

Piaget, J., Inhelder, B. (1966). L'image mentale chez l'enfant. P.U.F., Paris.

PROCESSING TV 1NFORl1ATION AND EYE MOVEMENTS
RESEARCH

Gèry d' Ydewalle

Department of Psychology University of Leuven/Louvain
Belgium.

1. THEORET1CAL 1NTRODUCTION

Broadbent (1958) postulated that human information processing is restricted by a
limited capacity filter between the large variety of sensations we have and tne
attentive stages of input analysis. He claimed that both the visual and the auditory
sensory systems function as parallel information-processing channels; that all
environmental inputs (e.g., sounds and visual stimuli) can be received simultane
ously. A precategorical analysis is performed: certain physical features are discer
nible (e.g., pitch and size), and ethers aren't (content, context, or meaning). The
filter mechanism allows only one message at a time to pass from sensory memory into
the attention system. For example, in an environment within which two human speech
tracks run simultaneously only one can be attended to at a time. Broadbent claims
that about 1.5 sec. is necessary to switch attention from one sensory input modality
to another (Broadbent, 1971; Davis, Moray & Treisman, 1961; Moray, 1960), whilst
ethers have estimated a much shorter span. Moray (1960) for example, indicates that
50 msec. is needed for very simple auditory stimuli (in our proposed studies, much
more complex stimuli will be used). The degree to which our attention can switch
between different inputs is also deemed limited. Treisman (1968) and ethers modified
Broadbent's model considerably to incorporate findings indicating that some content
material from the unattended channels do indeed break through to active attention.
These models imply that although stimuli in unattended channels are severely
attenuated they have not ceased to exist.

Neisser (1967) made a major central distinction between "preattentive processes" and
"focal attention". In the preattentive stage holistic parallel processes use the
stimulus information, arriving simultaneously, to construct the separate sensations
involved. These result in rather crude impressions of the stimuli's properties
(movement, general location, brightness, etc.) which have little or no effect on
behaviour. This differs from the phase in which the stimulus information has oecome
the focus of attention. Attention, according to Neisser (1967), is serial: Only one
object can be attended to at any given moment, and each attentive act takes time.

When simultaneous processing of multiple sensory inputs is required, one often
refers to "divided attention" situations. The serial-controlled mechanisms of atten
tion produce divided attention limitations, but Schneider and Shiffrin (1977) and
Shiffrin and Schneider (1977) have shown that these limitations can be bypassed when
automatic-parallel processing is utilised. Automatic processing takes place in
long-term memory, is triggered by specific inputs and operates largely independently
of the subject's control. When automatic-attention processing is activated, it will
not necessarily affect ongoing controlled processes. There is an obvious similarity
between the distinction Neisser (1967) makes between preattentive and attentive pro
cessing and the distinction Sniffrin and Schneider make between automatic-parallel
and serial-controlled processing. These are however also a number of dissimilari
ties, one of which has influenced our research proposal: contrary to Neisser (1967),
parallel processing from multiple external stimuli to meaningful content and context
is possible within the approach of Shiffrin and Schneider insofar as the automatic-

l

201

~arallel processes for the ap~ropriate multiple inputs are well learned,

One of the assumptions found in recent theories is that short-term memory has
automatic and controlled processing and storage functions that, in some cases and
especially with serial-controlled processing, compete fora limited capacity within
the short-term memory. Tuis conception can be contrasted witn the more traditional
theories that view short-term memory, now more commonly labeled "werking memory"
(Baddeley & Hitch, 1974), as having storage functions only. The more recent t,1eories
that agree upon the existence of demanding processes (processing and storage) that
consume the available capacity and activities with no capacity trade-off (with
parallel processing), have led Naven and Gopher (Gopher et al., 1982; Naven &

Gopher, 1979, 1980) to propose, and to provide evidence fora multiple-resource
allocation theory. In this approach, the human-information processing system incor
porates a number of mechanisms, each having its own capacity. These capacities can
be allocated among several processes at any given moment,

2. INFORMATION PROCESSING OF AUDIOVISUAL MATERIALS

The previous discussion presents issues which are important for research in audiov
isual broadcasting and presentations on Visual Display Units (commonly called VDU
investigations in human factors research). The implications of the earlier analyses
Broadbent and Neisser made for audiovisual presentations are clear. At any given
time, either the audio or the visual input is fully analysed. Tne number of input
modes however increases, if the video display also contains printed material (e.g.,
subtitles) superimposed on a moving visual image or if presentation contains both
speech and music. Switching attention between the separate input modes takes time
and should therefore be avoided. If, however, the assumption is made that parallel
processing of certain materials or multiple-resource allocations occurs increasing
the flexibility within the human system tnen fewer inter-input interferences are
likely to occur. Nevertheless, as the information lead increases, the attentive sys
tem will eventually become overtaxed. The system will then only accept input from
one source at a time, werking as a single-input system.

Although film, television, and VDU research use perceptually rich material that is
ecologically beyond the laboratory limitations of simple, single stimulus presenta
tions, most of the research that has been undertaken has not been concerned with
attention and processing issues, Our research focuses on the processes and factors
involved in reading subtitles in films and the way in which the subtitles are
related to the ether inputs from the screen.

Television companies often import programmes and films in which a "foreign" language
is spo·ken and which therefore need translating, Subtitling is used in several
Western European countries including Belgium, the Netherlands, and the Scandinavian
countries because it's cheaper than dubbing which is used in the Federal Republic of
Germany, France, Greece, Italy, Spain and Portugal. Subtitling adds one input chan
nel to audiovisual presentations. A large number of problems worth investigating
arises when one seriously looks at wnat the subject is doing when watching televi
sion. The time used by the subject to read a subtitle can be influenced by his
knowledge of the foreign language spoken. Children get into the habit of reading
subtitles, and it is possible that this reading behaviour is automatically triggered
off even when, as adults, they have mastered the spoken foreign language suffi
ciently. Understanding the foreign language or reading the subtitles can be con
sidered superfluous for these parts of a movie which provide redundant information.
The processing of information is needed to follow and understand tne movie, switch
ing attention from the visual image to either the audio channel or to the subtitle.
Tnis switcning takes time and exploits loading capacities of the short-term or werk
ing memory. If a certain amount of parallel processing is possible, two input chan
nels (e.g., the audio and visual tracks) could be entered into our cognitive system
without too much loss of time and available memory space. A considerable amount of

202

research on eye movements in reading text materials has recently shown that reading
a subtitle requires sequential focusing (Just & Carpenter, 1980; Rayner, 1978).
Reading behaviour typically involves a sequence of eye fixations on words (above 150
msec. duration), which are preceded and followed by saccadic movements (about 30 to
50 msec. duration). A number of variables affect the duration and the sequence of
the fixations (Rayner, 1983). If parallel processi._ng between the several input chan
nels is possible, the subject could process the subtitles on a superficial level by
means of peripheral vision sufficiently to understand ti1e movie. Our first research
question therefore considers aspects of reading behaviour: Do sequential eye fixa
tions and saccades occur when subtitles are read.

About 40% of the television output of the Dutch channel of Belgiwn (BRT) is from
abroad, and almost all of it is subtitled (Muylaert et al., 1983). A rule of thumb
is used for determining how long a subtitle is to be displayed. A subtitle consist
ing of 2 x 32 characters and spaces is displayed for six seconds. Shorter subtitles
are scheduled proportionally. The origin of this rule of thumb is unknown. Psycho
logically speaking, it is surprising that presentation time is defined by the number
of characters and spaces in the subtitle, if one assumes that normal reading
behaviour occurs. The available literature on eye fixation suggests that one indeed
reads words in such a situation and that fixation time and sequence are determined
by the content of the words in the subtitle, and not by an arbitrary string of char
acters and spaces. On the other hand there is also the possibility that some form of
superficial processing of the subtitles is done in peripheral vision (e.g., keeping
track of the orthographic properties of the words). There is literature available
in which the suggestion has been made that the orthographic lay-out of the indivi
dual characters within a word may be used to access the meaning of the words and the
content of the subtitle (Massaro et al., 1980).

The BRT, in collaboration with Open University in England, nave carried out the
first pilot study on subtitles (Muylaert et al., 1983). Voge (1977) reviewed the
subtitling versus dubbing debate and concluded t:i~at little empirical testing is
available. Muylaert et al. (1983), constructed subtitles for "Dal las" extracts to
test the hypothesis that the amount of attention paid toa subtitle depends on a
number of variables: the use of one line versus two; the occurrence of unusual
breaks between two lines or between two successive subtitles; and finally, devia
tions from the six-second rule (shorter and longer presentations). Variations in
eye-movement patterns occurred with changes in type of subtitles and with the educa
tion level of the subjects. Generally speaking, viewers seemed to find it very dif
ficult to avoid looking at subtitles. However, detailed analysis of the data was
not possible due to technical limitations.

The quality of equipment in our laboratory has improved since the first investiga
tions. While implementing the different components of our eye movement monitoring
and registering equipment (DEBlC 80 + PDP 11/40), we extended the first study of the
BRT (for a full account of our study, see Muylle, 1984). A German movie was used
because of the subject's unfamiliarity with this language. The analyses of our data
suggested a few conclusions that still need more detailed analyses. The eyes are on
the subtitles at least for one third of the subtitled time (our subjects were
first-year university students). During this time, our subjects did not show the
typical eye movement pattern of reading behaviour (except with a few subtitles with
one or two subjects). Subjects more commonly look at the moving image first and
quickly jump to one or two keywords from the subtitle. The jump (or saccadic move
ment) is quite accurate, which may be explained either by parallel processing in
peripheral vision of parts of the subtitle or by corrections during the jump. The
last possibility is not likely as several studies suggest that visual acuity during
a saccade is either absent or at least severely diminished (for more recent studies,
see Haber & Hershenson, 1973, and Leisman, 1978). One key issue here concerns what
is picked up in parafoveal vision: this should be investigated more carefully.
Another finding of our study is that subjects spend more time on the subtitle when
longer presentation times are provided (four-, six-, and eight-second rules were
used in tnis study). Again, this may mean that the subJects do need more time to
process the subtitle. However, it is also possible that subjects first look at the

203

subtitle, then go back to the moving image, and, if more time is made available
(with the eight-second rule), jump back again to the subtitle. This cyclic pattern
could expiain the longer viewing time on the subtitle and also the almost complete
absence of reading behaviour of our subjects.

3. SUMMARY

The purpose of our contribution was to make an inventory of the trade-offs between
looking at the moving image and processing the subtitle. Does reading occur? Is
there successive scanning from the pictures to the subtitles and from the subtities
back to the pictures? Could both forms of information be processed simultaneously
with no loss of understanding of the flow of information in the moving image? What
information is captured in peripheral and parafoveal vision, and how is it used in
the purposive sequence of eye movements?

REFERENCES

Baddeley, A.D., Hitch, G. (1974). Working memory. The psychology of learning and
motivation, Vol. VIII. Bower, G.H. (Ed.). Academie Press, New York.

Broadbent, D.E. (1958). Perception and communication. Pergamon Press, 0xford.
Broadbent, D.E. (1971). Decision and stress. Academie Press, London.
Davis, R., Moray, N., Treisman, A. (1961). Imitative responses and the rate of gain

of information. Quarterly Journal of Experimental Psychology, 13, 79-91.
Gopher, D., Brickner, M., Navon, D. (1982). Different difficulty manipulations

interact differently with task emphasis: Evidence for multiple resources. Journal
of Experimental Psychology: Human Perception and Performance, 8, 146-157.

Haber R.N., Hershenson, N. (1973). The psychology of visual perception. Holt, New
York.

Just, M.A., Carpenter, P.A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87, 329-354.

Leisman, G. (1973). 0culo-motor system control of position anticipation and expecta
tion: Implications for the reading process. Eye movements and the higher psycho
logical functions. Senders, J.W., Fisher, D.F., Monty, R.A. (Eds.). Hillsdale,
New Jersey.

Massaro, D.W., Taylor, G.A., Veneszky R.L., Jastrembski J.E., Lucas, P.A. (1980).
Letter and word perception. North-tlolland, Amsterdam.

Moray, N. (1960). Broadbent's filter theory: Postulate Hand the problem of switch
ing time. Quarterly Journal of Experimental Psychology, 12, 214-221.

Muylaert, W., Nootens, J., Poesmans, D., Pugh, A.K. (1983). Design and utilisation
of subtitles on foreign language television programmes. Theorie, Methoden und
Modelle der Kontaktlinguistik. Nelde, P.H. (Ed.). Dummler, Bonn.

Muylle, P. (1984). 0ogbewegingsregistratie bij het bekijken van anderstalige onder
titelde televisieprogramma's. Niet-gepubliceerde licentiaatsverhandeling. Leuven.

Navon, D. Gopher, D. 0979). On the economy of the human information processing sys
tem. Psychological Review, 86, 214-253.

Navon D., Gopher, D. (1980). Task difficulty, resources, and dual task performance.
Attention and performance, Vol.VIII. Nickerson R.S. (Ed.). Erlbaum, Hillsdale.

Neisser, U. (1967). Cognitive psychology. Prentice-Hall, Englewood Cliffs.
Rayner, K. (1978). Eye movements in reading and information processing. Psychologi

cal Bulletin, 85, 616-660.
Rayner,K. (Ed.) (1983). Eye movements in reading: Perceptual and language processes.

Academie Press, New York.
Schneider, W., Shiffrin, R.M. (1977). Controlled and automatic human information

processing: I. Detection, search, and attention. Psychological Review, 84, 1-66.

204

Shiffrin, R.M., Schneider, W. (1977). Controlled and automatic human information
processing: II. Perceptual learning, automatic attending, and a general tneory.
Psychological Review, 84, 127-190.

Treisman, A. (1963). Strategies and models of selective attention. Psychological
Review, 76, 282-299.

Vage, H.(1977). The translation of films: Subtitling versus dubbing. Babel, 23,
120-125.

FROM SURFACE FORM TO THE STRUCTURE OF THE
INTERFACE - STUDIES IN HUMAN COMPUTER INTERACTION

AT INRIA

Pierre Falzon

Institut National de Recherche en Informatique et en Automatique, Le Chesnay
France

The central problem in man-machine interaction is the c9mpatibility between two ele
ments:

(a) the operator, and his physical, perceptual and cognitive characteristics;
(b) the macnine, and its different aspects: dimensions and lay-out, information cod-

ing and informatio_n structure.

Ata first level, the designer must endeavour to attain a certain compatibility
between the physical characteristics of the system and the physiological and percep
tual characteristics of the human. At this level, the designer is concerned with
work place dimensions and general lay-out, information visibility, etc. This field -
ergonomics - is now very well established. Ata second level, the designer's task
concerns the compatibility of the system with the elementary operations performed by
the operator. These operations consist of acq-uired schemes, which can be sensor i
motor, procedural and /or anticipatory. Tnis rule-based behaviour must be matched by
appropriate surface aspects of the machine. Tne designer has to choose, for each
sub-task, the optimal way to encode information in order to facilitate the use of
these schemes. To give an example, fora tracking task, different types of displays
will be studied (pursuit, compensatory, predictive, analogical, ?ictorial, etc.).
The studies of stereotypes (which are sensori-motor or cognitive routines) belong to
this second level of compatibility. Tnis is the field of human factors. Finally, at
a third level, the designer has to take two fundamental human activities into
account: information processing and mental representation. The relevant questions
become: which information is processed? Which variables are elaborated by the opera
tor? wnich heuristics, which reasoning algorithms are used to reach the goal? wnat
are the characteristics of the mental representation of the system? At this level,
studies of the knowledge act1v1t1es are fundamental. On the machine side, the
designer is no lon5er concerned with information encoding, but with information
structuring. This is what cognitive engineering is about. The global compatibility
of a man-machine system can be achieved only if compatibility exists at each of
these three levels.

As a matter of fact, the available body of knowledge is very unbalanced. We know a
lot about ergonomics, quite a bit about human factors, and not much about cognitive
engineering. The aim of the Ergonomie Psychology Project at INRIA is to contribute
to the development of knowledge on the cognitive activities of the human elements of
the systems: this knowledge can be used to design machines adapted apriori to their
users' functioning logic. Our work is then clearly focused on the third level of
compatibility described above. However, it is sometimes difficult to have a clear
cut separation between the different levels, especially between the second and third
one. In fact, surface form and deep structure interact in several ways. The aim of
this text is to present some aspects of these interactions, which will be illus
trated by examples from different studies we have conducted. We are concerned with
all problems related to human-computer interaction, whatever the domain of applica
tion: process control, office work, data base interrogation, programming, etc.

206

1. THE DESIGN OF INFORMATION DISPLAYS

I will begin with an example from a field which we have studied for quite a number
of years, Air Traffic Control (ATC), and which clearly differentiates between the
second and third level of compatibility. Toe main goal of the ATCers' task is the
security of the aircraft they control. In order to achieve this goal, ATCers have to
process information given by different sources: the flight plans and the radar
screen are the two main ones. The radar screen (see fig. 1) displays information
concerning:

(a) individual airplanes
(b) the present state of the situation

Figure 1 A simplified radar image

TI1is display is structured in terms of objects and properties: the objects (the air
planes) take on some properties (position, heading, speed, flight level, attitude,
etc.). Each object is independent as far as the image of the overall situation is
concerned. On another hand, the analysis of the operators' information processing
activity has shown that the reasoning process was not centered on the present state
of each airplane, but on the future separations (vertical and horizontal) between
airplanes considered pair by pair (Bisseret and Girard, 1973). The mental represen
tation of the the traffic situation is structured in terms of variables and rela
tions between these variables (Lafon-Milon, 1981). The relevant parameters are not
objects and properties, but two variables (the vertical and horizontal separations)
and their relation: each of these variables is the result of the processing of more
elementary data, i.e. of object properties. For example, in order to evaluate the
future horizontal separation, the operator has to process information relative to
the present positions and speeds of two airplanes. The operators' task is then,
starting from the information displayed by the machine, the elaboration of a mental

207

representation, the· structure of which differs from the machine representation. In
order to reduce tne gap between the two representations, we have proposed (Falzon,
1982a) a new display, structured in terms of variables and relation. Figure 2
presents the same situation as in figure 1, but with a different dis~lay structure.
Along the abscissa, the values of the horizontal separation (in nautical miles) are
plotted. The ordinate shows the values of the vertical separation (in thousands of
feet).

HORIZONTRL
SEPRRRTION
(In· nauttca -1

ml Ie • >

711)

confl Ict
zone

60 50 40 30 20 1 li!I

VERTICAL
SEPARATION

(In thous11nds
of feet)

Figure 2 Representation structured in terms of relation

2

3

4

5

6

The triangle indicates the simultaneous separation values for the pair of aircraft
of Figure 1. The dots behind the triangle represent the evolution of the separation.
They allow the display of the direction and speed of variation of the separation.
The controller's task is then to estimate whether the triangle will get inside the
conflict zone at the intersection of the axes. The issue to be stressed here is
that the surface form proposed in Figure 2 is probably not the best way, and cer
tainly not the only way to formalise this display structure. A multitude of other
graphic modalities can be (and actually have been) thought of. This is in conformity
with what was said earlier, i.e. that having chosen a display structure compatible
with the operators' mental processes (~,ird level of compatibility), the designer
still nas to choose an appropriate surface form for this structure (second level of
compatibility). In the above case, one may presume for instance that other surface
modalities might facilitate the extrapolation task.

The lack of compatibility between man and machine representations can have very
negative consequences, as a study of the yroblem solving activity of the Paris sub
way traffic controllers has shown (Senach, 1983). In this system, the controlled
objects are bi-dimensional: one dimension has to do with the planning of the train
movement, the other one refers to the drivers assignment. These two dimensions are
independent: a driver does not always drive the same train all day long, and a given
train may be used for different purposes within a day. Tnus, incidents differ
according to their consequences: when a train stops, it can cause delay for the
train, for the driver or for both. Several studies have been conducted (simulations
of problem solving with experts) and their results have pointed out that:

(a)

(b)

208

although the experimentations did not introduce any temporal constraints
their design, the analysis of the problem is not very precise: some of
important variables (relative to the drivers) are not processed.

in
the

the operators process two incidents belonging to two different types of .iroblem
in the same way: in some cases they only look for solutions which can reduce the
delay of the train, not taking other variables into account, and all the solu
tions chosen generate a delay for the drivers.

These results have been interpreted in terms of problem space reduction. In other
words, the operators process a problem simpler than (and different from) the real
one, by failing to analyse all of the relevant parameters. W,.~at is especially
impressive is that, although the operators have had a long experience with the sys
tem, they are still not experts. Tuis simplification of the problem can be
explained, in particular, by the fact that, in the present system, one of the two
important variables is more salient than the other. Tne trains positions are
displayed in real time on the control panel and the most important document is the
graphical representation of the process showing all the theoretic states and train
pos1t1ons. Data about drivers are only supplied on an alphanumeric list providing
all the assignments for each driver. Tuis representation system makes it difficult
to combine the information relative to the two dimensions of the controlled objects,
especially because of the time constraints which hold for the decision making pro
cess. This experiment clearly shows the direct effect of a display structure on the
operators' processes. The problems that are met in process control are often caused
by a lack of consistency between the displayed information and the cognitive
processes. Tne operator is forced to switch from the machine representation to his
own (Bisseret and al., 1979). The situation for the operators of the Paris subway is
worse: the structure of the display has made it impossible for the operators to
build an adequate representation of the problem space.

2. INTERACTIVE LANGUAGE STUDIES

Language is a question of fundamental importance in the research we undertake, and
this for several reasons. First, because language is, by necessity, the only way to
interact with a computer, whatever type of language (programming language, command
language, natural language), symbols (alphabetical, pictorial) the medium of commun
ication (keyboard, mouse, joystick, etc.) are used. Second because language is the
external representation of a cognitive activity. As such, the analysis of language
use can provide us with important clues as to the mental processes involved in a
given task.

2.1. Command languages

One branch of research has tackled the question of command languages. There are
numerous studies of existing command languages, we have evaluated some of them. Tne
results are very often quite negative but instructive. To give an example, Escaraba
jal (1982) has evaluated the command language of a graphic editor. The system uses a
graphic langua5e: the possible actions and objects are represented by icons. In one
of the experimental conditions, subjects had to match the icons with their defini
tions. Even in this situation (which represents the "easiest" condition) a consider
able number of incorrect associations were made. T,.~e results show that subjects
experience much difficulty in understanding symbols that represent actions and have
far less trouble associating icons and objects with each other. The author concludes
that the command language should use icons to refer to objects, and words to evoke
the actions performed on these objects. This first example shows that it is impos
sible to define the vocabulary of a command language without taking the fundamental
cognitive processes of the language user into account: in the previous example for
instance, the recommendations of the author (icons for objects, words for actions)
are probably closely related to the way these concepts are stored in memory. In

•

209

other words, the solution to the problem is not to be found in re-drawing the icons
(which would be a tyi-1ical human factors approach), but rather in choosing a dif
ferent representation system, more adapted to the cognitive structures of the users.
Several studies have explored the problem of designing command languages. Research
on naming has grown rapidly in the recent past, motivated by changes in the users
population: prospective users are no longer computer specialists, willing to adapt
to the machine. Most designers are aware of this situation, and, in the hope of
facilitating the learning and use of the computer functions, the names of the com
mands have often been selected a:mong the general vocabulary of the (English
speaking !) user. This inclination is motivated by the assumptions that commands
will be more or less self-explanatory for the users (they will evoke concepts that
these already possess), and that they will be remembered (or even guessed!) more
easily: by choosing an everyday language, the designer hopes to build a friendly
interface. That may indeed seem a reasonable perspective. Alas, things are not that
simple.

The problem of naming is, at a first level, to be considered a classic human factors
problem, dealing with information coding. At that level, the relevant questions
concern the optimal choice among different modes of representation (for instance:
icons or words?), different sets of symbols, etc. Ata second level, the problem of
naming is a problem of cogn1t1ve engineering, i.e. a problem of compatibility
between the mental processes of the user and the functioning logic of the machine.

What is the situation for the naive users? They have some knowledge of the operation
they can perform wnen the task is done manually, i.e. without the computer. Associ
ated to these operations, they know a set of words, which they use to refer to these
operations. The problems are then:

(a) are the meanings of the words used in a given context (the manual task) easily
extendible toa different context (the computer domain)?

(b) are the operations in the manual task similar to the operations of the computer
version of the task? This question can be extended to include:
- is it possible to establish a one to one mapping between the manual operations

and the computer functions?
- are there any computer functions that have no equivalent in the manual task?

What is now the situation for the experienced users? In addition to the knowledge of
the manual task, they have some knowledge of what computers are in general, and of
the functioning of one or several computers.

D.L. Scapin, in a series of experiments, has studied the use of computer commands in
restricted natural language by naive and experienced users. In one experiment (Sca
pin, 1981), subjects (with or without experience in the computer domain) had to
learn to use a text editor, and were submitted toa cued recall experiment one week
later. During learning, subjects were given command definitions, varying two fac
tors: redundancy (the command word was, or was not, repeated in the definition) and
context (operational, i.e. related to the task, or functional, i.e. related to the
computer function). Some of the results of this study will be presented here.

First, redundancy is more helpful to subjects with experience in the computer domain
than for naive users. This can be explained by the competition (for the exi-1erienced
subjects) between the new command words and the command words learned on other sys
tems. Redundancy is useful for the memorisation of these new associations.

Second, experienced subjects are better in recalling the possible functions of the
system, although they are not always able to recall the commands associated to the
functions, and they are able to rephrase the command definitions. Naive subJects do
not memorise as many computer functions, but the recalled functions are memorised
with their labels. Recall is more difficult if the formulation of the cue differs
from the definition given in the learning phase.

Third, and surprisingly, naive subjects' recall of commands is more extensive if the

210

commands belong toa technical vocabulary. This phenomenon can be explained in the
following way:

(a) for the experienced subjects, words only represent the surface form of an under
lying concept. Through their interactions with computers they have built an
ability to conventionalise. They are able to differentiate the concept, wnich is
stable, from the command, which varies according to the systems. Their only
problem is to identify the concept, and then to try to avoid errors related to
the fac t that, in other sys tems, this concept is not evoked by the same command
terms, i.e. errors related to the competition between different surface forms.

(b) for the naive subjects, when command terms belong to the general vocabulary, the
concepts that are evoked belong to their general knowledge, and interfere with
their representation of the computer function. Tuis problem does not exist if
commands are formulated in a technical language. The phenomenon is also influ
enced by the fact that the computer concepts are not well established: naive
subjects are still very dependent on the surface form of the function.

Tne author suggests an interesting method: in order to facilitate the learning of a
command language by naive users, the operational definitions of the commands should
be given first, and then the functional definitions. In that way, the learning of
the computer domain will be based on the knowledge of what the subject already
knows. As Scapin notices, this is quite different from the way user's manuals are
generaly structured.

Another experiment (Scapin, 1982) has focused on the effects of having the subjects
themselves name the commands on learning. Subjects have been tested in two condi
tions: command creation vs imposed commands. Two other variables were used: struc
ture (in the creation condition subjects were, or were not, given a structuring
rule; in the imposed condition, commands were, or were not, structured), and number
of commands (31 or lJ).

This experiment has provided a lot of interesting results concerning the usefulness
of structure in the acquisition of the command language, the effects of the nUL1ber
of commands, and the spontaneous syntactical patterns 6enerated by the subjects.
Here v1e will focus on another result, concerning the effect of the generation of the
commands by the subjects. The recall performance is better with computer commands
created by the subJects than with an imposed language. Tuis generation effect is
stronger when a structuring rule is supplied.

Concerning the language designer, these studies nave interesting conclusions.
Language designers are in the worst position to give an opinion on the language they
have built. First, because they are all computer specialists, and, as such, have
acquired a knowledge of the possible computer functions. Second because, through
their interactions with different computers, tney nave developed an ability to con
ventionaiise, i.e. they are able to learn new and arbitrary relationships between a
computer function and a surface form quickly. And third, because they benefit from
the generation effect: the names given to the commands are their own.

2.2. Operative languages

The research we have presented assumes that in the foreseeable future, most man
machine interfaces will still use a restricted dialect. The question is then to
study appropriate restrictions, which would not hamper the communication. Tuis is
the approach followed in studies of computer commands in restricted natural
language. However, a second approach is possible. Instead of studying specific res
trictions of natural language, why not study the natural restrictions of specific
languages? When the operators of a system have to communicate verbally, they tend to
build operative languages, molded by the characteristics of the task and its objec
tive. These languages are restricted, as compared to natural language, in a number
of domains: vocabulary, syntax, field of discourse area few. They have the powerful
capabilities of natural language (they can give commands, request or give

211

information, comment on the situation, etc.), while avoiding its possible ambigui
ties. In fact, even subjects allowed to use natural language in typing instructions
for a computer have been observed to restrict the way they express themselves, i.e.
they switch to an operative dialect (Gould et al., 1976). In that perspective,
natural language cannot be considered a natural command language.

Tne study of operative languages would be helpful for the design of computer co:ramand
languages, in two different ways:

(a) for a given domain, 1>y providing the vocabulary and the farms of expression
appropriate for the computer version of the tasi<;

(b) whatever the domain, by providing indications for the elaboration of these
languages, and particuiarly on the natural rules of restriction.

This approach will be
Traffic Controllers
study (Falzon, 1982b,

illustrated by the study of a specific language, used by Air
(ATCers) in their communications with aircraft pilots. A first
1983a) has shown two important points:

(a) tnis language uses a limited number of words. Moreover, it is possible, starting
from this lexicon, to design an even more restricted vocabulary, still allowing
a large number of messages to be taken into account.

(b) most messages begin with a "command" word: this command word is sufficient for
the categorisation of the messages. Moreover, in each category, the possibie
constituents of the messages are highly predictable,

In other words, as soon as the command word is understood by the expert, a specific
body of knowledge can be activated, allowing expectations on the following informa
tion. Schema theory provides a framework for this process. The messages of a
category can be considered as a list of different instances of a common underlying
schema, as different actualisations of a single schema. Each schema is a pre-defined
frame, with slots requiring to be filled with specific pieces of information. The
understanding of a message can be described as a process which is first data-driven
(a schema is activated by some schema-associated word) then conceptually-driven (the
schema is then instantiated, i.e. the slots of tne schema are filled with the infor
mation from the message). Tuis analysis has been developed in a second study (Fal
zon, 1983b, 1984). The messages emitted by the controllers (in a second corpus of
ATC communication) have first been categorised, and a method of schema abstraction
has been devised, Tne method is based on the fact that, in each category, the mes
sages vary in different ways. Tne surface form (vocabulary, form of expression)
varies, of course, but also the way the schema is instantiated, i.e. the content:
two messages can be parapnrases, or can have a varying amount of overlap in their
meanings. The analysis of the- variation in surface form and in meaning allows:

(a) a description of the schema of each category of message,
(b) the elaboration of a dictionary of words, which has the following characteris

tics:
- it does not include all the words used, but only the necessary words (lacon

ism);
- the word definitions are phrased in terms of tne schematic knowledge previ-

ously defined, i.e. are domain-oriented (functional distortion).

Laconism and functional distortions are two general characteristics of operative
representations, in the sense of the theory of operativity developed by Ochanine
(1981), as opposed to cognitive representations. A cognitive representation tries
to give the most accurate, objective description about an object; an operative
representation, on the contrary, is biased and incomplete, tailored to fulfil a
given taslc (different examples of the operative attitude of subjects involved in
different types of task are given by Bisseret, 1933).

Among tne words of the dictionary are schema-associated words, i.e. words that evoke
a specific scnema.

212

Tne schematic knowledge has been implemented in programs, which were tested using
another corpus of ATC communications. The first result concerns the success of the
approach. Although the system has virtually no syntactic abilities (the only syntac
tic clue being that messages generally begin with a schema-associated word), and
although the vocabulary is indeed very restricted (the programs only know of 75 dif
ferent words, 33 of which are schema-associated), it can process 78% of the con
trollers' commands. This is especially impressive when one considers that a number
of failures in understanding are provoked by limitations of the knowledge base: some
words, categories of messages or message modalities did not appear in the corpus
that was used to define the dictionaries of words and schemata. A larger corpus
would certainly increase the system's performance.

A second result concerns the analysis of the difficulties met by the system in
llilderstanding. The most frequent single type of errors (32% of the understanding
problems) were caused by omission of the command word. In those cases,since the sys
tem expects to find a schema-associated word at the beginning of each message, no
schema is evoked and the system fails to understand. Ellipses of the command word
occur wnen the controller knows that the dialogue or situation context is so con
straining that the pilot is expecting a given category of message. In other words,
ellipses occur when the context itself evokes a schema. A conclusion based on this
observation is that understanding would be improved by two different devices:

(a) a communication analyser, which would keep track of the recently evoked sche
mata, and which would diagnose dialogue-driven ellipses.

(b) a situation analyser, which would be based on a description of the flight plan
as a hierarchy of scripts. Knowing the script being performed, the system can
infer the schemata that can or cannot be evoked. These expectations can guide
the comprehension of the messages, and allow the diagnosis of script-driven
ellipses.

2.3. Understanding and debugging programs

Programming languages are anot.'ter way to give commands to a computer. Criteria such
as duration of program design and development, ease of maintenance (or debugging)
and ease of learning have oecome very important for the evaluation of these
languages. lt is naw obvious that facilitating the comprehension of computer pro
grams decreases the duration and cost of programming, and reduces the programmer's
workload. A recent experiment (Detienne, 1983) has investigated the activity of
understanding computer programs. The experiment (conducted on expert programmers)
included a debugging task, followed by a recall task, in which the subjects were
asked to rewrite the program as accurately as possible. Tne hypothesis was tnat
understanding would involve two different kinds of processes: data-driven processes,
guided by the program code, and knowledge-driven processes, guided by the expertise
of the subjects. An interesting example of the interaction between bath processes
will naw be described. During the debugging task, subjects were asked to verbalise
what they were reading or thinking as much as possible. One of the errors they had
to diagnose was of the following form:

GAP A + B

The correct instruction should have been:

GAP = A - B

'This error was sometimes very hard to spot. In fact, what happens is that when sub
jects read the word "gap", a body of knowledge about what gaps generally are is
evoked, and provokes the inference that a subtraction will follow. Tnis expectation
leads to inaccurate perceptions of the+ sign. For one of the subjects, the infer
ence was so strong that ne read aloud "minus" instead of "plus" three times in a
row. In the recall phase of ti~e experiment, two different Kinds of errors appeared.
Bath deserve to be mentioned. Tne first type of errors concerned the name given to

213

the increment variable in a loop instruction. In the initial program, the increment
was systematically named "j". Subjects frequently recalled "i" instead of "j". This
confusion is particularly interesting when compared to the second type of recall
error. Distortions appeared on the names of some variables. These variables had been
given arbitrary names by the original writer of the program. During recall, a number
of subjec ts changed these into meaningful terms, i.e. words related to what the
variable stood for.

In ether words, distortions in recall do apl-'ear, but for different reasons, and cer
tainly not randomly. Increment variables are very often named "i" or "j" (by conven
tion: there is of course no obligation to do so). The name of these variables is
totally arbitrary and plays no role whatsoever in the representation of the program
logic. Thus, changing "j" for "i" is probably an indication that the surface form
has not been memorised at all, and that only its category (i.e. "increment") can be
accessed, the subjects then choose among the usual codes. The reverse is true for
the labels of the ether variables. Their names are helpful in building a representa
tion of the program, and if they do not seem clear enough, the subJects spontane
ously code them appropriately, The construction of a mental representation of the
way the program operates is then facilitated if meaningful names are given to ti1e
meaningful variables.

3. STUDIES IN SYSTEM DESIGN

It is one thing to choose the vocabulary of the commands of a system, it is another
to define the necessary functions. In ether words, it is worth studying the names of
the commands, but it is certainly necessary to study the operations these commands
will initiate. Very little research addresses this topic. In most cases, designers
ask for some help, once the system has already been built, and only to adapt the
surface aspects of the system. Designers assume that the functions of the system
correspond to operations that are meaningful to the operators. One can very much
doubt the validity of that point of view, especially in the prospect of designing
intelligent systems, capable of efficiently assisting the users. The functioning
logic of the machine, based on the designer's logic, differs widely from the logic
of use (Richard, 1983). The design of adapted systems requires the availability of a
model capable of describing the processes of the operators, namely: what is the
users' representation of their activity, and how do they plan their actions? The
goal of the research some of us are conducting is therefore focused on the structure
of the planning activity of experienced office werkers. Two hypotheses are made. Tne
first hypothesis is methodological: when operators speak about their activity, they
of ten begin their explanations by expressions like: "I send the invoices", I take
care of the contracts". These expressions generally refer toa macro-action composed
of more elementary subtasks, that they can express in more detail if they are
requested to. Thus, the verbalisations are modelled by the way operators program
their actions, by the existence of a hierarchy of goals and sub-goals. A second
hypothesis is that subjects involved in a given class of activities do not possess a
set of procedures corresponding to the whole set of possible tasks: they adapt, they
combine a restricted number of procedures to meet the constraints of the situation
they face. For this reason, the analysis of the operators' planning activity may
allow the description of a set of elementary actions that have the following charac
teristics:

(a) they are seen as sub-goals by the subjects;
(b) they are common toa number of activities;
(c) they are composed of a body of more elementary actions relatively consistent and

independent of the task context.

This study, very much inspired by different works in AI, implies the definition of a
formal model which will be used to describe the actions at any level. One goal of
the analysis is then the elaboration of a frame of representation and of its

214

necessary slots. Some of these slots can already be predicted: for each action, the
frame must allow the specification of pre and ~ost requisites, of the subgoals of
the action, of their status (compulsory, optional, compulsory under a condition), of
their ordering (procedure or free order), etc.

A first research project in that area has been completed (Sebillotte, 1983a, 1983b).
Four different types of office work have been studied. Tne results are very
encouraging. From a methodological standpoint, it seems relatively easy to make the
structure of the planning activity apparent. For example, one of the subjects
stated: "My main job concerns the medical accounts". To the experimenter question
"What does that mean?", she answered "Tney must be typed and mailed". Typing and
mailing are for the subject the two sub-goals of that specific activity. These sub
goals are independent in the sense that one of them could be done by another opera
tor, but typing is a pre-requisite for mailing. A limited set of actions seems to be
sufficient to describe the operators' activity, whatever the specific activity of
the division. The same goals and sub-goals are phrased by the subjects. Tne differ
ences lie in the objects on which the actions are performed (contract, invoices,
forms, etc.), and on some characteristics of the planning activity:

(a) In some cases the objects influence the choice and number of sub-goals. One of
the goals was for example "order something". The sub-goals are:
- if the object ordere<l is "stationery": fill in a form, keep a copy.

if the object is a large piece of expensive equipment: fill in a form, ask for
a signature, keep a copy.

- if the object is a book: check availability, fill in a form, and keep a copy.
(b) Some actions are characterised by a fixed order of subgoals, others are more

flexible. In those cases, although the same sub-goals appear for all subjects,
and although each subject may use a constant procedure, procedures may vary
across subjects.

Another interest of this study lies in the analysis of the way the activity is ver
balised.

The first point to notice is that the subjects use a variety of forms of expression
to refer to the same underlying action concepts. This does not mean that a command
vocabulary is impossible to define, but that defining the actions and defining the
commands are two different matters.

The second point is the vocabulary used by each subject. One interesting observation
in that respect concerns the variation of the level of meaning of some words. Here
is an example of this phenomenon: the word "send" is used to refer to the MAIL
action, if the document has already been typed, verified, signed, etc. But the same
word "send" can be used to refer to a whole procedure, SEND, i.e. the set of sub
goals TYPE+ VERIFY +SIGN + MAIL. Different interpretations of that behaviour can be
thought of; we will propose one. The word "send" chiefly refers to the MAIL sub
goal; i t can indifferently be used to refer to the SEND macro-ac tion or to one of
its subgoals because MAIL represents the fundamental feature of the procedure. In
fact, any sequence of ac tions that incl·udes the mail sub-goal can be considered an
instance of a SEND macro-action. Toa certain extent, a procedure consisting of a
single MAIL sub-goal could be considered a minimal instance of the SEND action.

In that perspective, one design problem is the fact that the external representation
of the actions, i.e. the language used to describe them, is not as rich as the
actions themselves. However, one must consider the fact that there is little ambi
guity as to the meaning of a given word when this word is used in context. To get
back to the previous example, we can imagine a machine that could accept the command
"send" and which would be able to interpret it at the appropriate level, by asking
itself questions like: does something exist which has recently been typed and not
sent? If it is a letter, is it signed? Questions like these would allow both the
problems of ambiguity to be resolved and the accomplishment of all necessary prere
quisites to be verified.

l

215

4. CONCLUSION

The different fields of research that have been illustrated may seem to diverge to
some extent. However, I am convinced that the differences are very much surface
differences, and that the goal we pursue is one and only one. whatever the domain of
research, compatibility is the focus of our work. Compatibility between information
display structures and mental representations, compatibility between the concepts
evoked by the names of the computer commands and the computer functions, compatibil
ity between the structure of the operator' s planning activity and the structure of
the software. Tuis is, for us, a key issue for the development of adapted computer
systems.

REFERENCES

Bisseret, A. (1983). Psychology for man computer cooperation in knowledge process
ing. Information Processing 83, LEA Mason (Ed.) Elsevier Sciences Publishers B.V.
(North Holland), Amsterdam.

Bisseret, A., Boutin, P., Michard, A. (1979). Introductory elements co ergonomics
research in man-machine systems. New Trends in man-machine communication, IRIA,
13-32.

Bisseret, A. Girard Y. (1973). Le traitement des informations par le controleur du
trafic aêrien: une description globale des raisonnements. IRIA Report R37.

Detienne, F. (1984). Anal1se exploratoire de l'activitê de comprêhension des pro
grammes informatiques. Proc. AFCET Conf. on "Approches quantitatives en gênie
logiciel", Sopnia-Antipolis.

Escarabajal, M.C. (1982). Manuel d'utilisation et critiques d'EDIGRA (Editeur gra
phique). INRIA Technica! Report BUR J207 Rll.

Falzon, P. (1982a). Display structures: compatibility with the operators' mental
representation and reasoning processes. In Proceedings 2nd Annual European
Conference on Human Decision Making and Manual Control. Bonn.

Falzon, P. (1982b). Les communications verbales en si tuation de travail: analyse des
restrictions du langage naturel. INRIA Technica! Report 19.

Falzon, P. (1983a). Vocabulary Restrictions in Operative Languages: Towards guide
lines for computer commands in restricted natura! language (unpublished docu
ment).

Falzon, P. (1983b). Understanding a technica! language. A schema-based approach.
INRIA Research Report 237.

Falzon, P. (1984). Tne analysis and understanding of an operative language. Proc.
1st IFIP Conf. on Human Computer Interaction. London.

Gould, J.D., Lewis, C., Becker, C.A. (1976). Writing and following procedural,
descriptive, and restricted syntax language instructions. Research Report RC
5943, IBM Watson Research Center, Yorktown Heights.

Lafon-Milon, M.T. (1981). Reprêsentation mentale de la verticalitê au cours du diag
nostic dans le controle aêrien. III: Reprêsentation des êtats futurs. INRIA
Report CO 8107 R66.

Ochanine, D. (1981). Recueil d' ar tic les. Proc. of a seminar on "L' image opêrative",
P. Cazamian (Ed.), Paris I University.

Richard, J.F. (1982). Logique de fonctionnement et logique d'utilisation.INRIA
Research Report 202.

Scapin, D.L. (1981) Computer commands in restricted natural language: some aspects
of memory and experience. Human Factors, 23, 365-375.

Scapin, D.L. (1982). Computer commands labelled by users versus imposed commands and
the effect of structuring rules on recall. Proc. Conf. Human Factors in Computer
Systems; Gaithersburg.

Sebillotte, S. (1983a). Reprêsentation des actions de l 'opêrateur. Etude de taches
administratives. INRIA Research Report 256.

216

Sebillotte, S. (1983b). Analyse pr~liminaire du travail de secr~tariat dans un ser
vice hospitalier. INRIA Technical Report 30.

Senach, B. (1983). Computer aided problem solving with graphical display of informa
tion. Psychology of Computer Use, T.R.G. Green, S.J. Payne and G.C. van der Veer
(Eds). Academie Press. London.

ORGANISATIONS AND SYSTEMS

NEW TECHNOLOGY: CHOICE,
CONTROL AND SKILLS

Chris Clegg, Nigel Kemp and Toby Wall

Social and Applied Psychology Unit
University of Sheffield

UK

This paper examines some of the psychological and organizational aspects of
computer-based technology, with particular focus on the use of Computerised
Numerical Control (CNC) machine tools in manufacturing engineering. The objective
is to introduce and develop some ideas from the fields of occupational psychology
and organizational behaviour in ways that will promote an understanding of the
uses and impact of advanced computerised technology.

The paper argues against the technological determinist view that once an
organization has chosen its technology, then this inevitably leads toa particular
form of organization and style of management. The aim is to demonstrate the
reverse, that organizations have a choice in how to organize for and manage new
technology and that one very important aspect of this choice concerns who has day
to-day operational control of the equipment. The argument is that such choices
need analysing in their organizational context since they are in part dependent
upon other factors in the organization. Furthermore these choices have major
implications for the profile and distribution of skills required in the
organization and, at the same time, have a major hearing on the pattern of
economie and social benefits and casts which accrue.

The paper draws on material from two case studies undertaken by the authors and
refers to relevant theoretical literatures. Before presenting the case material
we describe what is involved in CNC machine tool working: first however we briefly
outline our research interests in this area and our normal method of working.

1. SOCIAL AND APPLIED PSYCHOLOGY UNIT

The Social and Applied Psychology Unit (SAPU) is attached to the University of
Sheffield and is jointly financed by the Medical Research Council and the Economie
and Social Research Council of the United Kingdom. Most of the Unit's work
involves research into the psychological well-being and effectiveness of people at
work. One important aspect of this involves investigation of the psychological
and organizational aspects of new computer-based technology, in this instance with
particular reference to manufacturing firms. It is our general belief that whilst
more and more money is becoming available in Europe and elsewhere to undertake
research and development work on the technical aspects of such innovations, little
is known about the human side of these changes. Our group is undertaking research
and development work into these human aspects because they are psychologically
important in their own right, and also because there is evidence that these
factors are crucial co-determinants of the overall success of any advanced
technical system.

Our normal method of working involves long-term investigations of technical
innovation within manufacturing companies. As such we are able to monitor and
evaluate what happens before, during and after significant changes. We act as
independent researchers accepting no fees for our work and giving each of the
significant interest groups in a firm rights of veto over our presence.

219

Confidentiality of individual views and anonymity for the collaborating
organizations are guaranteed, and our research reports are made freely available
to all employees within the organization. We_do however reserve the right to
publish our findings.

We now describe the particular focus of this paper, namely CNC machine tool
working.

2. MACHINE T00LS AND CNC W0RKING

Machine tools (be they manual or computerised) are simply mechanically controlled
tools for shaping metal - for example drilling holes, making cuts or planing off
surfaces. 0perating a manual machine tool involves several activities. First,
the machine must be set up with the right tools that will drill the correct sized
holes or make cuts to the required dimensions (i.e. 'tool setting'). Second, the
machine needs setting up such that the material to be drilled or cut is fixed in
exactly the right place (i.e. 'machine setting'). And thirdly, the machine needs
operating, for example at speeds appropriate for the tool and the material, whilst
1t performs the drilling or cutting (i.e. 'machine operating').

A computerised machine tool involves the same three activities as a manual one
except that, in addition, it needs programming. It is the program (on tape) which
controls what the machine does. For example a program can instruct the machine to
drill 10 holes in a flat piece of metal using 10 different sets of (x, y)
coordinates. Similarly a program can control the movement of the tool in 3
dimensions (x, y, z) at the same time as the movement of the material in 2
dimensions (a, b). This is called a S axis program.

As may be visualized some of these programs can be very long and very complex so
that after initial preparation they need validating or 'proving'. Usually this
is done in two ways. First the machine, tool and tape are run step by step on
some cheap practice material such as hardened foam. And secondly, they are run on
the real material very slowly step by step under carefully monitored and inspected
conditions.

With complex engineering parts in particular, the validation of a tape usually
reveals that some editing is required. This is for two reasons, first that there
may be genuine mistakes or errors in the program, and second that 'improvements'
may well be possible. For example it may be possible to erase some unnecessary
operations or alternatively to improve the links between series of tool movements.
(These improvements are equivalent to applying work study techniques to the tool
in its relationship to the material). Thus in addition to the common activities
of tool setting, machine setting and machine operating, CNC working also
incorporates programming, proving and editing work. Some physical, manipulative
skills however are no longer needed when using CNC machines. The significance of
these activities will be considered later.

The advantages of CNC in comparison with manual machine tool working are fourfold.
First, some CNC machines can do in a single operation what previously may have
required several separate operations on different machines. Secondly, a CNC
machine may be able to do it quicker. Thirdly it works with excellent
'repeatability' since the machine and the tape do not get tired or bored. And
fourthly it can do some work that would have been almost impossible (or at least
exhorbitantly expensive) on manual machines. Technically the advantages of CNC
working are such that in some markets in the world, only firms with CNC working
are allowed to tender to make some high precision components. It can be seen that
CNC machine tools are particularly suited to making small batches of complex
engineering parts which are repeated periodically. We now describe the use of CNC

220

machine tools in two organizations that fit this specification.

3. PRECISION ENGINEERS LTD. (PEL)

This company is a small, non-unionised, precision engineering firm which is part
of a large multi-national corporation. The company is located in the UK and
employs approximately 150 people. The company operates as a contract jobbing shop
making very complex parts in small batches for firms in the aerospace business
and in other specialised markets. Almost all the work involves precision
engineering usually in small batches and sometimes as 'one-offs'. Many of the
orders are repeated periodically.

Over the past 8-10 years PEL has invested heavily in CNC equipment to the extent
that, at present, nearly 40 machines are computer controlled in comparison with
around 100 manual machines. The latest CNC machines in particular are large
machining centres and represent major capita! inves tments of up to E0.80m. For
financial and operational reasons these machines are loaded very heavily the aim
being to achieve continuous utilization.

Commercially PEL puts in tenders for contracts quoting a price and specifying a
delivery date. If accepted the company usually receives the necessary raw
materials and a set of drawings from the customer. On receipt of an order a batch
is processed by the Planning department. Basically the planners draft a route
card which specifies and orders the required machine operations. In addi tion if,
as is typical, some of the operations are to be undertaken on CNC machines, the
planners put in a requisition for the Programming department to prepare the
necessary tapes.

Production Control receive a copy of the route card and use it to slot the batch
into the production schedule hooking it in machine by machine working back from
the required delivery date. The week prior to beginning work on this batch,
Production Control place it on the schedule for the relevant Production
Supervisor. By this time the raw materials and drawings (from the customer), the
route cards (from the planners) and the program tapes (from the programmers) are
available to the Production Supervisor. He simply allocates a man to the first
machining operation. On completion the operator marks off that he has completed
his operation, the work is checked by a quality inspector and the batch is passed
on by the supervisor to the next machining operation.

On average 20 distinct machine operations are required for each batch and the
lead time from receipt of an order to delivery of finished goods is around 3
months. At any one time approximately 200 batches are in progress through the
system.

Within PEL, management has chosen to staff these machines with skilled men and to
give them day-to-day operational control of both the manual and CNC machine tools.
Thus on all the machines the operators do the bulk of their own tool setting and
al ways set up their own machines. On the CNCs the men also prove out new tapes,
undertake some straightforward programming (not 5 axis) and edit their own tapes
to improve the working methods. In the case of 5 axis programs they work
alongside the programmer who comes onto the shopfloor to validate and edit these
tapes, the emphasis being very much on collaboration between programmer and
operator.

The CNC operators report that although they no longer need some physical,
manipulative skills they need all the basic engineering skills that they did when
operating manual machines , for example concerned with reading drawings and having
knowledge of materials to vary machine speeds. In addition they have acquired and

221

developed some new computer-related skills. They take an obvious pride in their
work and in their skills and their commitment to high quality engineering is
evident. They report that they enjoy the challenge of making complex parts and
are keen to demonstrate to the planners and programmers that they can improve the
working methods. They see the task as worthwhile and report satisfaction in
completing a whole identifiable component. It is also clear that their
operational control of the production process is a source of great satisfaction to
them and something they are anxious to protect.

Management recognise and reinforce this high level of skill and the ethos of self
control. For example, the Production Manager said "we've got good blokes here -
they're very skilled" and on being asked if he specified machine speeds and feeds
a Planner retorted, "we wouldn't insult their intelligence". It is widely
accepted that problems arise, are recognised and are put right on the shopfloor
and that people there need to have the levels of skill and the degree of control
to take the necessary action. The view is that paying 50 pence per hour more for
a highly skilled man is a marginal cost hearing in mind the value of the part he
is machining (which can be around E4-6,000) and the cost of the equipment he is
using (up to EO.BOm).

Of course there are bath benefits and casts associated with this approach. On the
benefits side, the men are clearly highly motivated and committed to good quality
work. Whilst they are 'expensive' there is a saving in indirect casts. For
example, with this level of problem-solving on the shopfloor, fewer planners and
fewer programmers are required than would otherwise be the case. On the other
hand however there is no doubt that these skilled men area very powerful largely
self-controlling group. From a management point of view there is too little
direct control of the production process. One of the particular problems the
managers have is in retrieving information that is available on the shopfloor, for
example when an operator has developed and used a good piece of editing. To some
extent the operators regard such edits as their private property and as a
personal mark. Clearly from the firm's perspective such information should be
freely available for general use subsequently. The firm is currently trying to
develop a computerised information system which will retrieve such modifications
and at the same time give much better data on machine and individual performance.
Management here are wrestling with how to keep the psychological and motivational
benefits of self-control at the same time as improving management control. One
can anticipate there may well be problems with this.

4. SPECIALISED PRODUCTS LTD. (SPL)

This unionised company works in the same markets, makes similar products and uses
equivalent CNC technology in comparison with PEL. The major difference between
the two companies concerns their size - SPL is very much larger. Our interest
here is in how SPL organizes for and manages CNC working.

The short answer is that CNC working in SPL is organized very differently. The
machine operators have very little operational control of the machines, their
major function being to monitor and mind the equipment. For example the operators
are expected to watch the tool to ensure it does not break. Periodically they are
also required to press a button on the machine to keep it running - this is to
"keep them involved in their work". Real operational control of the technology
rests elsewhere in separate highly specialised groups. Thus there is a group of
tool setters and a group of machine setters. Their areas of responsibility (and
lines of demarcation) are clearly specified. There is also a Programming
department which maintains total control of the tapes. Thus programmers prepare,
validate and edit tapes and the operators are not allowed to alter them in any
way. Indeed, the tapes are locked into the machines so that the operators cannot

r

222

handle them.

This lack of control for the operator has both operational and psychological
consequences. For example tools wear with use and are expensive to keep
replacing. In PEL the operators use their skills to correct for different degrees
of tool wear - this is within their control and is another factor fora skilled
man to consider. In SPL this problem is resolved differently - here the
programmers prepare a set of different tapes for differentially worn tools. Thus
there may be 3 tapes for the same job depending on whether new, medium-worn or
well-worn tools are used. The consequence for the operator of this set of choices
is relative deskilling. The operator does not need machine setting, tool setting,
programming, proving or editing skills. Basically he is a machine minder with
few decisions to make and little responsibility. In our experience such job
designs are usually accompanied by low levels of motivation, commitment and
satisfaction. This represents a set of psychological costs for the operators. It
can also result in operational costs for the firm if the work system is not
'people-proof' - in other words if hi!Jh levels of commitment are required, for
example, to maintain quality.

The assumptions underlying this set of choices are clearly quite different to
those in the previous case. In this instance paying 50 pence per hour extra for
direct labour is unnecessary, especially as it escalates with the shift premiums
which are necessary to achieve round-the-clock utilization. This money is better
spent on white collar expertise in planning and in programming, In this view
specialization and expertise are sought, and control is where it should be - with
management.

It is also clear that the profile of benefits and costs in SPL is different to
that in PEL. For example in this case, direct costs on the shopfloor are lower
and direct managerial control of the production process is much tighter. But it
is not clear how far indirect specialist groups can go in catering for all
contingencies. Thus, is the system effective? One would also predict that the
long-term impact of this method of work organization is to reduce the commitment
and motivation of the operators. The implicit assumption here is that this can be
resolved by extrinsic motivation (carrot and/or stick) whilst, at the same time,
the specialist groups (such as programmers) progressively work to reduce the need
for any operator involvement. Our personal predictions however are that carrots
and sticks are not enough to maintain commitment to quali ty, and that indirect
specialist groups will have difficulty catering for all contingencies, Thus we
would expect there to be some operational costs to this strategy.

S. ANALYSIS

The two firms described above are each ideally placed to capitalise on the
benefits of CNC working. Thus they each make small batches of high precision
engineering parts often in repeat orders. In terms of their markets, products and
technology they are very similar. However they have made very different social
choices in how to organize for and manage their CNC operations. The evidence of
these two cases runs directly counter to the technologically determinist view that
the social organization of such innovations follows directly from its technical
specification. Our position rejects technological determinism - rather we believe
that investment in certain sorts of equipment (such as CNC machine tools) may
constrain the range of social choices (see Bessant, 1983), but that significant
choices remain. The two firms described above have made very different strategie
choices (see Child, 1972) over how to organize for and manage CNC working -
below we explore some of their consequences.

223

In PEL, a small, relatively organically run firm (see Burns and Stalker, 1961),
management has chosen to make a "relative investment" in direct employees, giving
them operational control of the technology and encouraging them to develop the
skills necessary to run it. Accordingly the indirect functions such as planning
and programming are organized and perceived as support services to the production
process. They support it, but do not control it. Their skills are perceived as
complementary to those on the shopfloor and "on call" should specialist help be
required. Underlying this choice is a set of "techno-social logies" in which
people on the ground are assumed to have the best knowledge, experience and
expertise to control the operation. This is directly equivalent to the socio
technical perspective that variances are best handled at source (see, for example,
Miller and Rice, 1967; and Taylor, 1978). Clegg (1984) has argued that such
assumptions are particularly relevant to production environments where high
uncertainty exists and where large amounts of information processing are required,
as is the case with small batch, high precision engineering.

This logic stresses the marginality of direct costs and recognises the potential
savings that can be made in indirect costs. Adherents of this perspective are
sceptica! of the benefits of giving control to separate specialist groups since
such a strategy raises the problem of integrating their efforts. Failures here
can result in such groups setting and following their own objectives and
priorities to the overall detriment of the production process. This perspective
also runs counter to Frederick Taylor's (1911) Principles of Scientific
Management, which stress the need for separating the doing of a job from its
planning and controlling.

In SPL, a large bureaucratie and relatively mechanistically run organization (see
Burns and Stalker, 1961), management has chosen to make a "relative investment" in
the specialist, indirect functions, taking away all the operational control from
the shopfloor employees. These specialist groups are not supports to the
production process: they are controllers of it. Nor are their skills
complementary to those of the machinists - rather they have supplanted them. The
skills which in PEL were located on the shopfloor have migrated in SPL to other
functions.

The "techno-social logies" underlying this approach lay stress on the benefits of
specialization, expertise and direct control. Adherents to this view accept
Taylor' s (1911) die turn that doing should be se para ted from planning and
controlling, and would suscribe to McGregor's (1960) model of man using Theory X,
in which the shopfloor employee is seen as intrinsically unreliable and in need of
external control. Of course one of the aspects of this approach is that it can be
self-fulfilling. In our experience groups of operators subjected to high levels
of external control often exhibit low levels of motivation, which justifies and
reinforces the need for further external control.

A further conclusion we draw from these two cases is that the reasons for these
different strategie choices over how to organize for CNC working, are best
understood in terms of the organizational context within which such decisions
are made. Thus PEL is a small, informally managed company wi th high levels of
trust and relatively unsophisticated systems. On the other hand SPL is a large
bureaucratically organised firm with a history of specialization. Our argument is
that these choices reflect the prevalent "techno-social logies" or guiding values
in the firm, wh,ich in turn reflect the firm's history, culture and power
structures. Whilst it may, in principle, be feasible fora firm to implement CNC
working in a way "out of keeping" with other practices in the company, it is
unlikely to happen, and unlikely to survive intact should it be attempted. This
recognition of a need for congruence within a firm represents a form of
organizational/cultural determinism.

224

Our last point in this context is that these choices result in different patterns
of benefits and costs. For example the strategy at PEL has the benefit of high
shopfloor motivation through 'enriched' jobs, but the cost of remote managerial
control. On the other hand, the choices at SPL entail the benefits of low direct
labour costs with the potential costs of poor integration across functions and the
risk of relatively high rates of direct labour turnover due to job deskilling. In
our experience firms rarely draft up and analyse the pattern of benefits and costs
arising from their choices - and, just as significantly perhaps, even less often
analyse a different pattern that might accrue from an alternative set of choices.
Clearly there are some difficulties with attempting. such analyses.

6. IMPLICATIONS

Arising from the analysis above we derive six implications which we believe are of
more genera! interest to our understanding of the uses and impact of advanced
computerised technology.

First, the idea of technological determinism is misguided. A particular
technology many constrain social choices, but it will not determine them.

Secondly, there is clearly no single homogeneous effect of new technology on
operators and their jobs. For example, in one instance the use of CNC machine
tools may, for shopfloor workers, promote commitment, the development and exercise
of complex skills, and high levels of well-being, whilst in another, the opposite
may be the case.

Thirdly, the same argument applies to wider organizational issues. Again the way
CNC working is organized in one firm may promote integration across different
functional specialisms, whilst elsewhere the reverse may occur.

Fourthly, predicting which sorts of choices are taken, requires an understanding
of the organizational context within which the CNCs are installed. We believe
that relative investments in the pattern of control of CNCs depend on the logies
applied in the firm. These will not be unique to the installation of CNC working
but will represent guiding values in the organization reflecting its history,
culture and power structure.

Fifthly, it is clear that genera! ideas of deskilling (by a machine) or even of
skill polarization (between experts and non-experts) are over-simplified. In
practice what appears to happen is that control over different aspects of the
technology and the skills required to control and operate it, are distributed not
just up and down the organization (for example between 'management' and 'workers')
but also across different functional groups. Furthermore the profiles of these
distributions will probably vary firm by firm. One implication of this view is
that we need to adopt amore systemic view of control and skill in organizations
to capture the subtleties of these profiles.

And finally, we conclude that these different distributions will have different
profiles of benefits and costs in organizations and that these may be very
difficult to evaluate. For example one organization may need to compare benefits
such as commitment and motivation with costs such as low managerial control,
whilst another may be considering the benefits of low direct labour costs in
comparison with costs such as high rates of absence and employee turnover.

From a research point of view these issues now require careful and detailed
empirical study. Whilst of theoretica! interest in their own right, they may also
help organizations in making informed choices of how to organize for and manage
new technology.

225

REFERENCES

Bessant, J. (1983). Management and manufacturing innovation: the case of
information technology. In G. Winch (Ed.), Information Techno logy in
Manufacturing Processes. Rossendale, London.

Burns, T. and Stalker, G.M. (1961). The Management of Innovation. Tavistock,
London.

Child, J. (1972). Organizational structure, environment and performance:
The role of strategie choice. Sociology, 6, 1-22.

Clegg, c.w. (1984). The derivation of job designs. Journal of Occupational
Behaviour, 5, 131-14~

McGregor, D. (1960). The Human Side of Enterprise. McGraw-Hill, New York.
Miller, E.J. and Rice, A.K. (1967). Systems of Organisation. Tavistock,

London.
Taylor, F.W. (1911). The Principles of Scientific Management. Harper, New York.
Taylor, J.C. (1978). The socio-technical approach to work design. In K.

Legge and E. Mumford (Eds.), Designing Organizations for Satisfaction and
Efficiency. Gower, London.

SEMIOTICS AND INFORMATICS: THE IMPACT OF EDP-BASED
SYSTEMS UPON THE PROFESSIONAL LANGUAGE OF NURSES

Lars Mathiassen* and Peter Bpgh Andersen+

*Computer Science Department
+Department of the Integrated Study of Computer Science and the

Humanities, Aarhus University, Aarhus, Denmark

The aim of this paper is to stress that the use of computers may entail very radical
changes indeed in the professional languages used in the affected parts of an organ
isation. A consequence of this is that analyses of professional languages may be
applied advantageously in connection with system development. This paper builds its
arguments around a single example: The change in the professional language of nurses
in connection with the use of computers in a hospital ward. In the first part of the
paper we give a description of the situation before and after the system concerned
was introduced. Furthermore we present some basic concepts of semiotics. The second
part of the paper contains a semiotic analysis of the situation within the hospital
ward under examination. And finally, the last part of the paper draws some general
conclusions from the analysis.

1. INTRODUCTION

1.1. The Exeter Case

Before the introduction of the computer system, the situation could be illustrated
as shown in Fig. 1. It shows the nurses' conception of their work situation and is
taken from the "Edp handbook for Nurses". The figure gives a rough picture of the
communication situation of the nurse. At this point the figure serves as a good
introduction to the example. We see the nurse in the ward in the center, and around
her we see various other groups of people and media with whom or through which she
communicates.

227

Figure 1 The nurses' working situation before automation, as
conceived by the nurses

Here we will focus on her use of the Kardex system. In the Kardex she will enter
details on the patients' condition and on prescriptions which have been issued. She
will also find information which was recorded on previous shifts. In its physical
form the Kardex is a box containing a number of cards; one for each patient. Each
card is preprinted with certain columns, and, depending on what the nurse wishes to
report about the patient, she writes it in hand in the proper column.

Naw a computer system is introduced to replace the manual Kardex, and at the same
time part of the information from the case record is transferred to the computer. In
the same rough description as we used before, we can illustrate the new communica
tion situation of the nurse as shown in Fig. 2. On first sight the change seems to
be of little importance: Earlier the nurse read about the patient on a card from the
Kardex box, and, by the same token, she entered information about the patient on
these cards. Today she does the same, only naw she uses a terminal. But is the
situation really the same?

228

computer sys1em

8

Figure 2 The nurses' werking situation after automation

Let us take a closer look at a specific sequence of events after automation. In Fig.
3 we see a display showing a list of the patients in the ward on October 1976 - the
nurse will use this in order to select the sub-system which she will use fora given
patient.

'Monday----25.10. 76 AVON flU"SJf~(j SYSTEMS
1 ~ I SS I\OA '-IERCHAtH 14 MRS AUUtfEY J-=AHMEf.l 30 ._,i.?~ ALY!:i CHANDLt:11

Il M,IS WIJREA osrLEól ; MHS AG:JE; MILLINER 28 -~; A~Aó rA SIA nAKER
SI "GU· ,/OOMS ---- ------------------------- ------------ ------------ -------------

29 Ml ss ALEX IA HAWKEi? -------------- ·---- 18 Mns Atl:l CDOt'ER
12 Mh"S A:l,•H:.-'-iARIF.: COOK 3 MISS ANNADEL üRIK;l:R 17 l'IIR~ AMAflU/.. i-'OTTE~

BA Y G-------- --· --------- ------------- ------------ _____________________________ _

------------------- 10 MflS AOIUAIL COLLll::h 4 MlSS ALISO,I SAIJULE~
2 MISS Aflll:iH': SA1IYEK ICJ MISS AlUI\ c,;ttl-'E~lTF.i? 2o ,.AJ:-i~i AU1,0l,A 1-'AliHl:i-?

OA f 11-:------------- ------ ------ ------ ------------- ------------ ---·~----- _________ _
22 ol.l(lS ALU!::llTA SKJi"~Jl:N t:> .MRS A:li:II : Hli?1H:s r1:11 Ie .'llliS ALICE PRirlTëH

u 1\ y J ~-~~~-:~:~~:- ~~~=~: ___ ----~~-~:=-~~~~=~:-~~~=~: ______ ~~-~~=~-~·~~~~~:-~~ ==~~
U ~ l SS A;~Vt LA !-=O,ILEK 24 /.lliS A:1;JA UU fCtil::J? o :.\ 1 5~ A:/,; E üAliDNE~
7 .Y. J SS "TALA;U A ~Ml TH 27 MilS AtHHl-:11 SrlEPhl::h'U 2J MrlS ALI nl:A LA,'IYEtl

IJA Y K-- ------------ ------------- ------------ ------------ ------ ------ ------ ------

lndici\t P. by o,ft,A,U or 1--' the order in which Orders,~eports,Admisston,üiscnarqc
or Pos1t1on 1n ,'ldrd J.5 requirP.d=-'
lt Ord~rs ,or •leports 1s -requi r P.d then tyµP. the numtJers ot the p"tients in the
o rder fP(luired:-'

lt printîn1) is r,-quirP.d, ini.Jicate here'

Figure 3 Display of the patients in the ward

Tne figures which precede the patients' names are the internal departmental numbers
of the patients. Since it is the order subsystem she wishes to use, the nurse writes
an 11011 in the space provided on the first line from the bottom. The space between

..

229

the two apostrophes is used for input data. Since the nurse wishes to make changes
in Mrs. Cook's order list, she writes "12" in the second space. The table shown on
the display tells her that she must write "12". When instructed to do so by the
nurse, the computer will display the image shown in Fig. 4.

, ~US A::NE - MAti JE A/;Tol ~-iF.T fE COOK
2S. 1 o. 16-------TO(J;;,y-Monda y

,c;, RI-Cllr\U TEMPEiV, rum:, PUL SE 2-HOUhLY.
'U'llflrr1t:~ti IJY MOUIH Fi10M 0000-HOUlt'S.
'IJ'1'ilU'[UlCAl JO:t Al" OBOO- HOUMS.
'D'CHECY. COi~Sf;H FonM.
'U'C.:•1U:r: SHAVE.
'Ll't' .. IYA1lf.:. rO;? fHl:AThF..

F 44YcARS 5PM 7524359

JypP. C or IJ t;Pf,orP. ,.rn or~1P.r to be CHAIJGEU or OELEfED
~ist ot:"ler p;ir,c nunioNs:- 1 1Cl),2(•U,JC4[4J),6(JJ,t:Hl.4(30lllJl,63,64llU) '
;;f"!xl p,'lllP.nt' 'Cunt1r1uP. presct path' 1 i?epo

0
rt tor this pc1t1cnt' 'WIW~G PATll:Nf'

Figure 4 Display of Mrs. Cook's present orders

Tuis display shows Mrs. Cook's present orders. The nurse types a "C" (Change) in
front of the orders which are to be changed, and a "D" (Delete) in front of the ord
ers which are to be deleted. The new orders which are to be added belong to the
order areas numbered 1, 2, 3, 6, 8, 63, and 64, which are indicated by the nurse at
the foot of the page. Where the majority of these areas are concerned, the nurse has
also indicated, in brackets, what orders are involved within those areas. The com
puter is capable of making these changes at once. If the nurse is unable to remember
the numbers of the individual orders within an order area, she needs only indicate
the area number as in the case of 63 above.

The computer will reply by displaying an image (not shown here) on which the nurse
may change the order "Record temperature, pulse 2-hourly" to "Record temperature,
pulse 6-hourly". The computer will then reply by displaying an image (not shown
here; see Fig. 10) which corresponds to area 63: "Drains". Here the nurse has the
opportunity to indicate the desired order within that area. On the next screen image
(not shown here), the nurse indicates the desired starting time for each order, and
if any individual orders are incorrect. Finally, the image in Fig. S will appear on
the screen.

230

,1,ms MJ:lE-M.,rtlE AUTÓlilETTE COOK r 44YEARS SPM 7524359
2:>. 1 O. 76-- - ----Toda y-/.londay

:AOUfHCAF1f:.
r;lEA f 1-'HESSUhE AREAS 'H J TH Hf.XACHL0Rm>t1AUE PCMül:R 4 xDAI LY.
ltlTi?A VE;WUS fLUl tJS AS PttESCî? J Pl l ON SHF.ET.
11Afl::1; OilLY, JOml 1-HOURLY.
m-:c:Hü.l fEl,ll-'l::UAlU11f:,PULSE o-HOURLY.
SUCTIOiJ t);lAlil, CAl-if: ot= VACUUM,MAflK AT 0800-HOUflS.
CliECK UillSSI :IG.

2o. 1 0. 70-------fuc sday
BEU !:JAlH.
SIT our t-OH OEU-MAKING ONLY.

It Updi'lte is correct, makP. choice below & SEND to RECotm this UPDATE **
ContinuP. µreset path'/' Nursinq Renorts tor this . patient' '
MorP. Orders tor this patient' , NothinQ turther" ' ,iR(J:lü UPUAfES/JJATll::UT' '

Figure 5 Display of Mrs. Cook's new order list

Tuis image shows the new order list. The new orders are marked with an asterisk
(there are no old orders in this example). The nurse can check whether the orders
are correct, indicating her acceptance or rejection. In the latter case nothing has
happened, and she may start all over again. As a general rule, the new orders for
Mrs. Cook will now replace the old ones in the automated nursing report.

Perhaps this may seem overwhelming at first sight; it is nevertheless our view that
the system has been well adapted, so that it is not difficult or troublesome to use
from a technica! point of view.

The computer system has been put into operation with the active involvement of the
nurses. Together with computer specialists, a group of nurses has analysed the pro
fessional language which is used in the manual Kardex. They have particularly
analysed the orders which have been applied. On t~is background they then, as can be
seen from the example above, constructed standard categories and sub-categories of
orders. In the new computer based Kardex system there is a total of 64 categories of
orders, and it is possible to make additional indications in so-called free text.

These are some basic facts. The second part of the paper offers an interpretation of
these facta from a specific point of view: how did the professional language within
the Exeter wards change when the system was introduced in the mid-seventies? But
first we want to introduce some basic concepts of semiotics.

1.2. Basic concepts of semiotics1

A theor2 of semiotics must treat two main subjects: language usage and language
rules • Language rules are rules concerning the interpretation and form of
linguistic signs, and they must be shared and supported by a social network of
language users. Language usage is the way in which the language users actually apply
the rules in communication. By the term semiotic or linguistic community~ denote
the totality of language rules, language usage, and language users. lt is the semi
otic community which is the subject of our paper.

•

231

We use the word "rules" in its social meaning, that is: rules prescribe how things
are done in a correct way from the point of view of the dominant group in the
linguistic community. ïnis has two implications: First, that rules can be violated,
since they do not represent natural laws. Therefore language usage will fall into
two ill-defined subjects: ~-abiding usage, and deviating usage. Second, that
deviating usage will in fact occur, since the norm may not be suitable for other
groups than the dominant one. Deviating usage is an important move in the continuous
struggle about control over language. In particular, it is an important factor in
the way in which a language develops.

We may set up two broad categories of language function: the survival function and
the development function. The survival function covers the routine usages of
language to meet the daily needs, its reason for being. The survival function is
normally norm-abiding. The development function may be explicitly marked, as is the
case in arguments about linguistic norms, and it may be implicit, as when linguistic
groups develop special features which serve to set them apart from the rest of the
speech community (e.g., teenagers vs. adults, rural vs. urban speakers, working
class vs. middle class, etc.).

The language rules specify how the signs are built. Signs can be described along two
dimensions. In the first dimension we distinguish between the content and expression
levels. The expression level is that aspect of the sign that serves as a vehicle for
conveying the o~,er component, the content level. The relation between content and
expression is called the sign relation. Since signs come in many sizes (morphemes,
words, sentences, paragraphs, chapters, etc.), there will be many types of sign
relation descriptions. Dictionaries describe the standard sign relations on the
level of words: the catch word represents the expression level, and the definition
is one way of representing the content level. In linguistic varieties of semiotic
communities the sign relation is predominantly arbitrary and conventional. There is
no inherent reason why a horse should be denoted by the expression "HORSE" and not
"COW". Traffic sign posts, however, form another type of sign where the sign rela
tion is non-arbitrary and iconic.

The linguistic rules also describe the combinatorial patterns of the signa, where
such exist. There are rules which govern the permissible combinations of phonemes in
a syllable, the permissible combinations of morphemes in a word, and the permissible
combinations of words in a sentence.

In informaties the distinction between information and data corresponds to the
content/expression division.

Two points should be noted:
the sign relation is a strictly dialectic relation
the computer is only sensitive to expression level units.

The first point means that expression units and content units cannot exist indepen
dently. One level must always be analysed with reference to the other level. The
basic analytica! method in semiotic analysis is the commutation test. It asserts
that in order for two units on one level to count as distinct units, replacement of
one by the other must produce a perceptible difference on the other level. For
instance, /i/ and /e/ are different phonemes in Danish, since there are two signs,
/mit/ and /met/, which have different content, and which differ only in one having
/i/ where the other has /e/. Similarly, /male/ and /female/ are different content
units, since there are two signs, /han/ ("he") and /hun/ ("she") which have dif
ferent expressions, and which differ only in one including /male/ in its content,
where the other one includes /female/. Also, there is no mechanical way to calculate
the contents of larger signs from the contents of their constituent signa. New con
tent units, new patterns of distinctions may come into existence.

The second point relates to the use of computers. A computer can manipulate
of characters, but there is no evidence that its mechanica! processes
deeper resemblance to the feats humans accomplish when they use language.

strings
bear any
It may

•

232

mimic human behaviour during a short interval, but the deception is revealed sooner
or later. The activity of program design and implementation snould be seen as an
activity aiming at creating means of expression. Technical descriptions of computer
systems play a role similar to phonological descriptions in semiotic theory: they
provide structure for the expression level of the signs. In fact, abstract data
structures and algorithms correspond to phonemic descriptions, while implementations
of these items correspond to phonetics.

We can also describe signs along another dimension, characterised by the opposition
substance versus form. The genera! idea is the following: Imagine some continuous
part of reality, e.~the colour spectrum. What language does, is to articulate
this continuum into parts that the language user in some sense considers different
from each other. Thus one part of the colour continuum is considered "red", another
part is considered "blue", etc. The colour continuum is an example of what we gen
erally denote the purpert of the sign. The purpert thus refers to that part of real
ity which we describe by a given sign. The term substance then denotes the articula
tion of the purpert by some form, whereas the form is the abstract principles of
organisation, defining types of signs .

Finally, if we combine the two dimensions of signs, and consider the content form in
its totality, it seems to fall into minor partitions, each partition being charac
terised by an especially tightly knit network of oppositions of relations. Such a
partition of the content form is called a semantic field. We have already met one:
the field of colour units. Other fields which have been investigated include: kin
ship relations, verbs of motion, verbs of communication (speech-acts), verbs of pos
session, etc. Especially in historical linguistics, the concepts of semantic fields
has proved useful in describing semantic changes.

The concept of· form is a structural concept. Here structure means a network of units
which mutually delimit each other by differences and oppositions, somehow holding
each other in check in some kind of equilibrium. Tnis structure is not fixed. It
develops historically and is constantly under attack from different groups in the
speech community, each group trying to design the structure according to its
interests and needs. lt has certainly ideological significance whether the political
semantic field consists of an opposition, "communism" vs. "the free world", or of
"planned economy" vs. "capitalism".

Fig. 6 shows amore innocent type of semantic fields, the verbs of possession (cf.
Bendix, 1966):

233

A has B after time T ~ has not B after time T

B is not A's unmarked wi th- respect
to "Bis not A's"

--------------------C causes it C lends AB C gets AB

A causes it A borrows B from C A takes B from C A gets rid of

chance A finds B A loses B causes it

A gets B
(unmarked with respect
to causation)

------'

Figure 6 Semantic field of verbs of possession. The distinctive
features are: causation, ownership, time (from Bendix,
1966, p.76).

B

The verbs contrast according to three dimensions: causation (/C causes it/, /A
causes it/ or /chance causes it/, ownership (marked or unmarked with respect to /B
is A's/), and time (A has or has not B after time T). Notice that the same signa
may be used to articulate other types of purport, for instance the continuum of
health states ("I've got the flu", "I've lost my health") or emotional states ("I
gave her my love").

Fig. 7 shows a description of the spoken vers ion ot the sign "take":

content expression

/A has B after time T/ (~ get t i k e

form
rid of)

/A it/
(t ~ p,k,

causes (~ find)
ei i u ~ a , 0 , etc. ...)

articulation of the continuum articulation of the

substance of possession states and sound continuum

changes

Figure 7 An analysis of the spoken sign /t eik/.

Note how the content and expression forms are defined solely by the way the sign
differs from its neighbours.

The form/substance distinction shows
"multiple-uses" of signs. Sometimes
spontaneously transferred to organise

its empirica! validity in predicting such
the form of one semantic field is more or less
a different type of purport, in the beginning

234

with a clear metaphorical tinge. Tuis has been the case in the area of man-machine
interaction which has been modelled over forms of widerstanding imported from man
man commwiication.

The important points to be remembered during the remaining parts of this paper are
the following:

a language commwiity exists through an interplay between rules and usage, rules
governing the usage, usage complying with, or opposing rules;
the structure of the content level of language is intimately connected to the
cultural and politica! aspects of the language commwiity;
changes in the content level of a language occur frequently, and a change in one
place may have repercussions throughout the whole structure;
the content and expression levels are dialectically related, on one hand they are
distinct, yet on the other not able to exist separately, like the two sides of a
coin;
the activity of programming aims at designing new expression forms which are
realised in the purport of micro-electronic processes and states;
the survival and development fwictions of natural language are intimately
interwoven.

2. SEMIOTIC ANALYSIS

In this second part of the paper, we shall use semiotic concepts to describe the
changes in the Exeter ward. The following points will be made:

(a) The expression level changes: the new expression substance makes it easier to
realise the expression form in different substances, and the expression form
becomes more restricted (section 2.1.).

(b) Similarly, the content form becomes less fine-grained. However, the
between content wiits also change: from being fuzzy and based on
experience and typical examples, they tend to become sharper and more
standard definitions (section 2.2).

borders
personal

based on

(c) Also, the sign relation changes: the relationship between the expression and
content level tends to become distorted and opaque. It is not clear which
speech acts are executed by means of the system (section 2.3.).

(d) Finally, we remark that the new sitns of the edp-based system also convey conno
tations (section 2.4.).

It should be emphasised that the following descriptions are our interpretation of
the statements made by the nurses, as documented in the "E½Handbook for Nurses"
chapter 5.

2.1. Expression level changes

Let US take
edp-system
application

a look at a fraction of the Exeter semiotic commwiity after the
has been taken into use. The semantic field is time and frequency
of drains. There are 8 signs, as shown in Fig. 8.

new
for

235

time or frequency of drain application

frequency time

definite indefinite relative to relative to
clock nursing work

DAILY WHEN NECESSARY AT ?-HOURS BEFORE BATH

2 xDAILY AS DIRECTED AFTER BATH

3xDAILY

Figure 8 The semantic field of time and frequency of drain ap
plication

The relevant distinctions seem to include: frequency vs. time, clock time vs . rela
tive time, definite vs. indefinite, and the numbers. Fig. 9 shows a tentative
analysis of the sign "DAILY".

form

sub
stance

definite (~ WHEN NECESSARY)

frequency (~ AT [?]-HOURS)

time and frequency of
drain application

/DAILY/

(built of D,A,I,L,Y,
all characters in
opposition to the
other members of the
alpha-numeric charac-
ter set)

pixels on screen
printer output
magnetic spots on
disks or tape

Figure 9 An analysis of the "computerised" sign /DAILY/

If we compare to preautomation times, we immediately note the differences. For exam
,>le, before automation the expression subs tance was paper, and this meant that i t
was difficult to change it. The computer media vastly increase the possibilities of
realising the same expression form in different substances: pixels on the screen,
dots or lines on a printer, magnetic spots on discs or tapes . On the other hand, the
expression form has been severely restricted: before, the nurse could use handwrit
ing with all its numerous possible distinctions - naw she is confined to the dis
tinctions allowed by the standard character set.

236

The example can readily be generalised: the expression level of the semiotic commun
ity is the part which is most directly influenced by automation, Clearly, the
expression substance is changed, but normally also the number and structure of pos
sible expressive distinctions change, being limited by the character set offered by
the terminal and printer. In the Exeter case, the restriction went even further, As
mentioned in section 1.1., a standard list of allowed expression units was compiled
and stored in the computer system, Clearly, at least the expression level changes
drastically, both with respect to form and substance, when computers are introduced,
Tuis observation is also relevant when we try to assess the impact of edp-technology
on different professional groups, since the content/expression distinction is
reflected in a social division of labour, Journalists, writers and managers are
mostly concerned with the content level of the signa they produce, whereas printers,
television technicians and clerks toa larger degree work with the expression level.
Therefore, the latter groups are most directly affected, for example through higher
unemployment rates.

2.2. Content level changes

But what about the content level? After all, this level is the important one, since
expressions are only means of conveying the contents. The point to be remembered is
that the content structure of semiotic communities cannot help changing when the
expression level changes, the reason being that the content units, in order to
preserve their social existence, must belong to signs which have different expres
sions, else they could not be communicated. Thus, if means of expression disappear,
their contents also disappear. But since the content units are defined by their
mutual differences, disappearance of one content unit will cause the remaining ones
to change their boundaries, and, by the same token, their definitions, Tuis again
changes the general perspective of the language users, since their conception of
reality is to some degree dependent upon the language at their disposal.

Let us look at the Exeter case again, and focus on the same fraction as above. Pre
viously, the part of English that constituted the nurses' professional language
allowed thema rich variety of semantic distinctions. As mentioned above, naw only 8
remain, or, more correctly, 8 are recommended - it is possible, but inconvenient, to
enter free text into the system, and it runs counter to the intention expressed by
means of the system. The semantic field of time and frequency is articulated in a
much less fine-grained way than before automation, But there is more to it than
that,

First, the semantic fields are not fixed in natural language, They change in com
plex ways, depending on context and point of view, Consider the word red about the
colour of hair. In an advertisement for hair dyes, it may cover a vast semantic
field with many shades: fair, blond, dark-blond, auburn, brown, black, or what have
you. But when I say to a male friend "I like read-haired girls", its neighbours are
probably only "fair" and "dark". It is certainly not all the fancy shades conjured
up by the hair dye manufacturer in his advertisement. And in literary works, the
author can consciously build up semantic fields with even fewer members, e.g. "red"
vs. "non-red", loading the distinctions with other distinctions important to the
theme of the book. Also in everyday conversations, semantic fields are continually
adapted to situation and point of view.

But in the Exeter system, the semantic field is fixed once and for all. "Daily" gets
its meaning from the same 7 neighbours in all situations. Period!

Secondly, we can also say something about the way the structure of the semantic
field changes. The boundaries between the elements of this structure can have dif
ferent properties. In our case, the distinction between fuzzy and sharp boundaries
in relevant. In everyday language, the boundaries between the elements of a seman
tic field are fuzzy. There are portions of meaning which do not clearly lie in one
section or another. Consider e.g. the word vegetables. Potatoes are clearly veget
ables, but what are strawberries?

237

Concepts are special examples of elements of semantic fields. Not all elements are
concepts. For example, it is not clear whicn concepts are expressed by emotive words
like "oops" or "damn", or by prepositions such as "for", "with", "by" . By a concept
we understand an element of a semantic field which has an extension and intension.

The extension denotes the actual phenomena of the concept, i.e. it denotes part of
the purport related to the semantic field. The intension, on the other hand, denoted
those properties (distinctive features) which characterise phenomena in the exten
sion of the concept. From what has been said above, we can distinguish between two
different idealised types of concepts: the Aristotelian and the fuzzy or prototypi
cal concepts.

In Aristotelian concepts, the intensions consist of a number of properties, which
are common for all phenomena in the extension of the concept. Thus , the phenomena in
the concepts' extension possess all the properties of the concept's intension. As a
consequence of these characterisations, we assume here that concepts can be classi
fied hierarchically by means of division and sub-division of the broadest and most
common concepts. Thus, a concept on a higher level in the hierarchy always has a
more comprehensive extension than that on a lower level; while a concept on a lower
level has amore comprehensive intension. However, the hierarchical structure is not
unambiguous, as it is possible to build a number of concept-hierarchies over the
same phenomena (e.g., human beings may be sub-divided into children and grown-ups,
or into male and female).

As the intension of the concepts is fully defining, the question of membership of a
concept's extension can always be settled with yes or no. The Aristotelian concepts
are characterised by sharply defined conceptual boundaries.

Where fuzzy or prototypical concepts are concerned, the intension similarly consists
of a number of properties. But even though all properties apply to some of the
phenomena in the concept's extension, it does not necessarily follow that some pro
perties apply to all phenomena in the extension. Here various phenomena are seen as
more or less typical specimen, and the most typical specimen are characterised as
prototypes belonging to the concept. Wnether a phenomenon is seen apart of the
extension of a concept is, among other things, based on the relative resemblance
between the phenomenon and the concept's prototype, and these assessments may vary
from person to person, depending on experience (Larsen, 1980).

In the following we will argue that the introduc tion of the computer based Kardex
probably entails a shift towards more Aristotelian concepts in the nurses' profes
sional language. If we can substantiate this thesis, we have rendered probable that
at least some kinds of automation may cause very fundamental changes in the semiotic
community. Until now, we have only shown that the number of content distinctions
decreases. We have not shown that the remaining boundaries become more sharply
defined; in fact, exactly the opposite could perfectly well happen.

The main reason why the content form will become more Aristotelian must be sought in
the area of language usage. We will first make some comments on the development
function, and then we will comment on the survival function.

2.2.1. Changes of use: development

In the following we will describe some changes in the mode of development of the
Exeter semiotic community. It is a well-known fact that computer based systems tend
to change in leaps: We have stable periods where a particular version of the com
puter system is running on the machine; during this period, users may discover
unwanted properties in the system, or the surroundings may change so that aspects of
the system become out-dated. But in spite of the growing dissatisfaction, the system
remains stable. At some point, the problems become too big, and management decides
that the system must be changed. The changes are specified, project groups are esta
blished, and the system development process is planned and executed.

238

Historical linguistics tel1 a different story about the manner in which semiotic
communities change: nere, changes occur in intimate connections with language usage
(in its survival aspect). Subcultures of language users create innovations, some of
them blossom and die, whereas others spread their seeds to other groups of society.
In fact, many usages of languages inherently involve language changes : discussions
often focus upon the proper use of words, participants try to convince each other
that their conception of a word or phrase should be used, or they create new words
or expressions to meet needs which are not served by standard expressions. Several
of the papers on the present conference, including our own, are deeply engaged in
these activities!

Tous language changes and fluctuates all the time. Government agencies have few pos
sibilities of planning a language change , dictionaries are mostly attempts to sys
tematise and regulate changes which have already occurred.

The point is not that language change is some kind of unconscious and natural pro
cess; on thecontrary, it may be very conscious and political, as for instance the
Norwegian language situation indicates. The point is that the relationship between
language usage and language change is more intimate than in computer based semiot
ica. Natural languages may, toa large degree, be used to talk about themselves,
they include signa whose content are other signa.

A similar dialectic is not possible in the Exeter system. Here the language rules
have been objectified. They exist as data in the computer, and can be shown on the
screen. The screen displays a grammar of a subset of nursing orders. The grammar is
described in a slot-and-filler formalism, consisting of a few columns, each one con
taining al the constituents allowed in this position. The nurse selecta one consti
tuent from each column to forma complete nursing order. See Fig. 10

1 :.IK!, AiHff-MAH IE ClldK URA l NS Monday---- 2S . i O. 76
: 20 OIISl·:f1Vt: 1

Oi1Al/J 1 AlJ I RAL : 2 1 C,\ ,iE or VACUUM :40 UAIL Y
2 COl<MUüA f l.:U : ?2 CLAMI-' : '11 2xûA IL 'J'
J POLY T tl!;.;J[; TU!Jf: : 2J cu:AN & Util::S~; (iJf tf l)l?Y CiAUZE : 4 2 Jxl)h l l 'J'
4 RU(JUbl 1Ul1t: : 24 CLl::Al-i & Utlt: ~S 11 1 fn · l-'Ar?M-=1- l Il GA Uli:: 4J Af 1 ? 1- rUI U" S
::, suc I 10;; =2~ 1-Ml-'fY l),lAl :JAGI: IH:Cl:JJ J,\CU: :4 -l ~HEJ iH:CESSARY
ö T- 1Ufll: :20 SrHJ~ll:tl UY l ?lcm :4~ Bl:FORE OATH
7 UIJüEil,<Hrn SrAL ,27 InRlüATE :40 Ar f ~R OATH

8 1-'AIU1CE;l[l:~ I S Ur AHlJtlMt:JJ:28 111:MO\/I:: 14 7 AS DJ t~t:CT EO
9 !)l)lJ I i!l.:Y!> ruue, : 29 uoc; ToR TO REMOVE:

: JO ? ru::MOVE ?
~o 1-'U~,p VALVt: l? l xUAlLY

List <"rld1t Jons ' 'J , 2 1, Q'){MArH~ Af OCOO- HOU;?S J
'IH> AUUI fl Oi~S' '

'- ,I

Figure 10 A display of possible orders concerning drains

For instance, the nursing order "suction drain, care of vacuum, daily" is con
structed by writing 5, 21, 40 . There can be no immediate feed-back from language
usage to language rules. Dissatisfaction has to be accumulated before it is techni
cally and economically feasible to change the system. Tuis again means that there
must be a gap between the experiences that cause language change and the change
itself. The experiences must be analysed and standardised in order to support pro
gramming.

Here we have the first factor which favours a shift towards Aristotelian concept
formation: one of the reasons why natural language uses prototypes is that it more
directly reflects the immediate and practical experiences of the language users when

239

the language is learned and developed. And one of the reasons why natural language
concepts are fuzzy is that concepts change continually and anarchistically. If the
concepts used by two language users are compared, they may have changed in slightly
different directions. When they talk, and the concepts must function as one and the
same concept, it will exhibit fuzzy boundaries, owing to the diversification.

2.2.2. Changes of use: survival

We have pointed out some differences between computer based semiotica and non
computer based semiotics in the mode of development. Now we will focus upon another
aspect of usage, the daily usage, the practical reasons for having the system at
all: the survival function.

First we will introduce two kinds of knowledge, connected to the
prototype/Aristotelian dichotomy mentioned above (Larsen, in press). First we have
episodic knowledge. Episodic knowledge is about personal experiences, events with
known actors, fixed with respect to time and place. Episodic knowledge is created by
the language user himself; it is an interpretation of experiences. On the other hand
we have semantic knowledge which is about states of affairs: about concepts, their
inter-relations and possible usage. Semantic knowledge includes knowledge about the
language. Semantic knowledge is, toa large degree, second-hand knowledge, acquired
through reading or instruction. A typical example is a botanist's knowledge of the
botanica! species and sub-species.

Let us once more take a look at the Exeter system, and consider the situation as it
was before the computer system was introduced: A nurse observes a patient; maybe she
reads the case sheet; she estimates the patient's medical and nursing needs; and
taking everything into account, she writes some orders in the Kardex. Maybe she
uses standard terms, maybe she expresses herself in a more varied and personal
manner because she estimates that the situation demands it. Later, another nurse
reads the orders, and nurses patient accordingly.

After the introduction of the computer system, the situation is different: Again the
nurse observes the patient, and maybe she reads the case sheet; however, by using
the computer system daily, she bas learned the given standard categories and sub
categories, and she will observe the patient and read the case sheet through those
glasses; maybe she estimates that the situation requires that she writes the report
in free text, but normally she will employ the given orders - because they are
there, and because it is easier.

In the former situation, it is certainly possible for the nurse to take pain to
interpret a personal experience in the light of previous experiences, and create a
meaning which is intimately bound to it. The knowledge recorded may have the charac
teristics of episodic knowledge. The entry can be loaded with context-dependent
meaning, of which a good deal will be interpretable to the other nurses in the ward,
owing to their shared background. In this case it is certainly possible to perform
the speech acts of interpretation and description.

In the latter situation, things are different, since the system invites a different
mode of usage. The groups of nursing orders are classified in a two-level hierarchy,
and the nurse must specify the order class before she can enter the order. Tuis
means that the gener al concept to which the "description" belongs, must be specified
before the description can be created. A movement from the general to the specific
is mandatory, and the speech acts performed will probably tend to be some kind of
determination of species, choosing between a fixed set of categories. One can doubt
whether episodic knowledge can be recorded in this manner. However this may be ,
there is no doubt that semantic knowledge is a necessary prerequisite for using the
system at all. Thus one may fear tnat the semiotic community changes, from a situa
tion where a group's personal and collective experiences are couched, interpreted,
and developed, to a situation in which a dominant group forces its classification
scheme upon less powerful groups.

240

We have argued that fundamental changes are to be expected wnen computers are intro
duced as tools into existing semiotic communities. In particular, we have argued
that the Exeter system probably will mean a shift in emphasis, from episodic
knowledge, based on prototypical concepts, to semantic knowledge based on Aristo
telian concepts.

The conclusion is delil>erately for;mulated in vague térms (e.g. "probably"). A more
positive statement would demand extensive empirical studies of the semiotic commun
ity before and after the introduction of the Exeter system. On the other hand, it
should be pointed out that the nurses' own appraisals in "Edp Handbook for Nurses"
support our conclusion:

It will be possible for important information relating to the patient to
be lost, due to the fact that this reporting system does not provide the
same opportunities for expression. For instance, it is the duty of the
nurse to help a patient who has indicated that he has a problem which he
is unable to solve himself. This fact should appear in the report. But
what is one to do in the absence of a standard formulation for precisely
this problem? Either the problem will not be reported, or it will again
become necessary to adopt a dual reporting system. (•••) There are many
things which may not be standardised. For example, observations, the
patient's mental state, and the patient's mood. How could such things be
standardised? These matters are so subjective that they must, by neces
sity, be reported verbally in order to ensure that the recipient of the
report has actually understood what is meant in the report. Thus the
danger exists that the most significant items may not be included in the
written report and may thus slide into the background. It is, in fact,
these very items which are most difficult to describe when using standar
dised terminology.

2.3. Changes in the sign relation

Descriptions of the sign relation in greater detail specify how the content units
are expressed by means of expression units. And in this case, where a semiotic com
munity changes through the deliberate introduction of a new edp-system, one of the
interesting questions to ask is: How, and to what extent will the new means of
expression be able to convey the content intended?

In relation to explicitly designed parts of semiotic communities, we will suggest
the following demands to the quality of the sign relation:

The principle of transparency and efficiency
the expression level should be designed in such a way that it clearly
indicates the type and effects of the speech act conveyed, and ensures
the speech acta reasonable chance of succeeding.

Commonplace as
systems with
tions upon the
sive automatic

it may sound, the criterion is by no means met by many of the
which we are familiar. For instance, it entails severe restric
structure of integrated information systems, discouraging exten
manufacture of new data sets (Nurminen, no date).

In fact, we shall see that the Exeter system seems to run counter to the prin
ciple in one respect - by the way, a point that gives some of the reasons why
the expressive system was standardised in the manner described. One of the rea
sons for automating case sheets and Kardex is to make reporting faster and more
reliable. This will enable management to allocate nursing resources on a day
to-day basis, one possibility being to assign the individual ward a basic allo
cation of personnel, and to maintain a buffer of nurses who are assigned to
different wards every day, following the work-load predictions of the system.
The net effect from management's point of view is improved economy: the net
effect from the nurses' point of view is corruption of their work community.

..

241

The nurses themselves give the following appraisal in "Edp Handboek for
Nurses":

If a computer were to be introduced which was similar to the system used
in Exeter, then nursing management would have direct access to all the
information which had been collected from the departments via the termi
nals. The staff in the departments would have no influence on what infor
mation was used, nor would they even be aware of when it was being used.
The uurse's report, which was kept in a Kardex system before, would no
langer be a tool for internal use within the department. The management
would be able to see from the automated nurse's report what examinations,
treatments and nursing care procedures were being provided for each indi
vidual patient. Tuis would permit the work laad to be calculated on a
daily basis. These calculations, when combined with the information relat
ing to patient occupancy levels, the nursing work laad, the number of
nursing staff, and the number of absences due to illness, would place the
management in a much better position to direct the distribution of the
nursing staff throughout the various departments.
In addition to the fixed staffing levels, a pool of nurses would be main
tained, who would not be employed in specific departments, but who would
be allocated as required. Let us say, for example, that the calculation
for the following day shows that a certain department with a fixed staff
ing level of 4 will in fact require 6.4 nurses, then precisely 2.4 nurses
would be allocated to that department form the pool.
The result of this will be a reduction in nursing care. If the patients
are to get used to new staff every day, there will be no continuity of
care, and we ourselves will no langer enjoy a secure werking environment.

Automatic allocation presupposes that weights are assigned to every nursing opera
tion, an~ since computers can only handle expression units, it entails a severe
standardisation of the nomenclature of nursing orders. Never has history witnessed
such a tight connection between economie objectives and their linguistic effects!

The reporting is no langer done by the matron, but by the nurses themselves. And the
means of expression have changed radically; before, the reporting was executed by
means of expression units which were distinct from those conveying orders and nurs
ing reports. Naw, the same expressive actions (inputing nursing orders, and report
ing them when they are done) convey two different acts:

(a) those of ordering and reporting nursing to other employees in the ward,
(b) those of reporting work laad to management.

Our evaluation criterion is violated since this semantic difference should be marked
with different expressions. In fact, the nurse may not even be aware of the fact
that she does the latter type of reporting, and in that case the speech act of
reporting should be considered defective, since the sender does not intend it. And
who is the sender of the ensuing allocation speech act on the content level? It can
not be the computer. The sender must in fact be the management, since they decided
the properties of the data which made the computer produce the allocation sheets.
Yet on the expression level, management will receive, not send the print-out. Thus,
from a semantic point of view, things have been turned upside-down on the expression
level. The sign relation between allocation sheets and their contents, allocation
orders, has become opaque. Clearly, distortions of this type are not unique to the
Exeter ward.

The last point to be made with respect to the sign relation is the following gen
eralisation: The expression level of every computer based semiotica must contain the
configuration shown in Fig. ll.

242

program 1---------r
design

~
~

syste ms
development
group

Figure 11 Basic configuration of expression level description

A system development group writes descriptions, some of which are read by the com
puter. Tuis enables the computer to read and write other texts. On the content level
description, the computer must be eliminated as a sender/receiver, and the contents
of the program - if any - must be shown as a direct relation between users and sys
tems development group, as shown in Fig. 12.

We have argued that the system implies changes in the semiotic community: from being
based upon the speech acts of description and interpretation, it shifted towards
classification and determination of species. Who is the sender of this content?
Still not the machine, since it is only a medium through which the communication is
effected.

utr speech act

speech act

t speech act

user ~

243

systems
development
group

Figure 12 Basic configuration of content level description

There is no escaping the fact: the senders are the participants in the systems
development group: management, systems analysts, and nurse representatives.

2.4. Connotation signs

It is worth while to take a closer look at the speech acts of nursing and disease
definitions, since they are conveyed by a special type of signs called connotation
signs. If you look at the screen displays, you will see that they do not denote
general properties of nurse work. They denote possible and actual nursing orders and
patient health states.

But signs may enter into other higher-order signs. In particular, a sign denoting
properties of reality, may be the expression level of a connotation sign. Thus, the
form of a connotation sign is: ((expression, content), content). The formula illus
trates the special mode of signifying of connotation signs: they systematically
denote their content by denoting something else. Connotation signs are rather effec
tive persuaders, as is attested by advertisements which draw heavily on connotation
signs. A soap advertisement denotes a group of young people crowded into a car, but
it connotes a quite different content: a better life, fun, a feeling of belonging.
And it is the latter argument, not the former, which makes us buy Rexona. For a
treacment of connotation signs, see Barthes (1957). Since edp-systems are parts of
semiotic communities, it should not come as a surprise that they also convey conno
tations. There is nothing wrong with that - all semiotic systems do. The point is
rather that connotations should be taken seriously, since they are transmitted
through the community day in and day out.

The nurses themselves are very conscious about the fact that new concepts about
patients, diseases, and nursing may be built into systems like the Exeter system.
"Edp Handbook for Nurses":

The danger exists of the patients simply becoming pawns in the game. The
individual patient will not receive individual treatment. (•••) It is
conceivable that specific health policy will be incorporated in the choice
of orders. E.G. socio medicine. In this case there would be both politica!
and central direction of the nurse's work. (•••) The nurse will possibly
lose a certain amount of interest in her work, since she will be denied a
proportion of the opportunity to take the initiative independently. There
is less of a challenge in choosing numbers than in formulating sentences.

244

Do nurses and management - each from their point of view - want to change their con
ception of patients, diseases, and nursing? How can they know whether the introduc
tion of the new edp-system will imply changes on these levels which correspond to
each of their intentions?

3. SUGGESTIONS

We have carried out a semiotic analysis of a given computer system. On first sight
the analysis reveals a number of critica! aspects in the system in question. More
indirectly, however, the analysis reveals shortcomings in the practices or stra
tegies of traditional development of computer based systems. In the last part of
this paper we will try to formulate our criticism constructively in the for.n of
alternatives.

3.1. Alternative systems and strategies

Let us start by outlining other ways in which computer systems might be applied in
relation to nursing. We do not think that hospita! systems of the Exeter type will
benefit nurses and patients since a major objective of these systems is to increase
external control of the nurses, and decrease coats. It may well be t~at if these
objectives are not acceptable to nurses and patients, they may see no reason at all
for using edp-technology.

However, there might be problems on the ward which could be solved easily by means
of computers:

Kardex and case sheets are sometimes needed by several people at the same time;
nurses work in shifts and it is difficult to draw up time-tables;
more than one nurse takes care of the same patient, and it may be vital that the
nurse knows what has been done on previous shifts.

One may envision a system which is only used locally by the individual ward. The
system will accept nursing orders and patient descriptions in free text, and it con
tains a good editor which makes corrections easy. It can display the Kardex record
for the individual patient. It might even be a system which could store and display
pictures, e.g. X-rays. Nurses who have just reported on duty can display entries
made during the previous shift. Toe system can also show nursing orders which are to
be effected by the nurse who takes over.

As a further facility the system contains edp-based tools for planning. These tools
are not meant for automatic planning, but they help the nurse in seeing the conse
quences of her choice in drawing up time tables. Finally it might be useful to have
some kind of concordance or lexicon in the system. A concordance system would show
all contexts in which a word or phrase occurred: if a nurse is unsure of how to use
a word in a concrete situation, the list will show her how her colleagues have used
the word previous~y. The ward may want to maintain a lexicon of standard defini
tions. This lexicon should be dynamic, and it should be controlled by the nurses. It
would objectify the current consensus among the nurses on use and meaning of impor
tant words. Such a system might be useful and avoid a good deal of the criticism
levelled against the Exeter case. This system would basically be used as a means of
expression and would exploit the computer's remarkable ability to realise the same
expression form in different substances and different graphical shapes. The content
is produced and reproduced by a closely knit group on the basis of shared education,
experience and interest.

The above-mentioned system is technically perfectly feasible. But is it attractive
from an economie point of view compared to the Exeter system? Ciborra (1981) main
tains that, seen from an economie viewpoint, there are two fundamental strategies

245

for the application of computer technology in organisations. One seeks to improve
the efficiency of the coordination of the working processes through a standardisa
tion of the information systems. The other seeks to improve the efficiency through
extension of linkages between the parties involved in the working processes. Real
life practice will always be a combination of the two strategies. The Exeter sys
tem, however, leans heavily to the first , strategy: standardisation. As opposed to
this, our alternative proposal is primarily based on the second strategy. Hence it
is not an economie argument as such which sets our proposal apart form the Exeter
system. As mentioned earlier the most important difference is that the Exeter system
facilitates a close external control. Tuis will not be possible in the alternative
propos al.

By applying the sytem we have outlined, the nurses will gain experiences which,
through a process of stepwise structuring, may lead to new applications (Sandewall
et al., 1982). In this context the Exeter sys tem presents a "ready-to-wear" sol ut ion
to a management problem, while the system we have outlined permits a process of
experimenting based on the interests and experiences of the nurses (Budde et al.,
1984).

Choice and evaluation of the two proposals and the two strategies for development
depends on the perspective applied. All development processes require descriptions
as a basis for realising the system. Traditionally, these descriptions are confined
to being expression level descriptions. They are based on what we will call the sys
tem perspective. Tuis perspective offers a relatively narrow view on the applica
tion of computer technology, and we suggest that it, among other things, is supple
mented with the communication perspective.

The system perspective focuses on the exp·ression level. The elements of the expres
sion level form a simple part-whole structure and are amenable to decomposition
techniques. The edp-based system consists of several components, e.g. users and
edp-system. Signals are transmitted between users and edp-systems, and there is
structural analogy between edp-systems and user component. In this perspective it is
sensible to talk about man-machine "communication" in one sense of the word. Expres
sion level descriptions in the system perspective can be used as drafts for pro
grams. The theme of these descriptions is how data are transmitted and manipulated
by formal rules.

Aspects of the content level may be described in the communication perspective. In
this perspective, communication is solely between humans, and the edp-system acts as
a channel or medium for this communication. It is a tool for storing and transmit
ting expression units, i.e. data. Humans and machines must be described by very
different types of concepts since they play different roles in the communication
process: humans are sensitive to bath content and expression, whereas machines are
only sensitive to expression features. In this perspective, it makes as little sense
to talk about man-machine communication as to talk about man-tv-set communication,
or man-paper communication.

From a linguistic point of view we recommend that methods for systems development
are extended to include the viewpoints offered by the communication perspective. The
communication perspective gives theoretical support to experimental methods in the
following sense:

(a) The purpose of many edp-applications is intentional creation of meaning in
humans;

(b) Creation of meaning cannot be predicted from expression level descriptions
alone, since it depends on the context of the interpretive process (cf. section
2.2.2.). Experience from linguistic and literary analysis indicates that content
analysis toa large degree must be post festum.

(c) Therefore, important properties of many edp-systems (i.e. production and repro
duction of meanings) cannot be assessed until the system is used in a realistic
context by its future users .

246

Rigid use of phase-oriented methods is comparable toa process of wr1t1ng teaching
material where the exact structure of chapters, paragraphs, sentences, footnotes,
and references is determined alone on the teacher's vague ideas on the content of
the material. The form of the material is fixed before any practical insight into
the actual teaching situation has been obtained. No teacher would even dream of
embarking on such an endeavour.

But the communication perspective has its own limitations. Firstly, it must be
embedded in descriptions of the larger, possibly noncommunicative, work processes
since, once again, the interpretation depends on the context of work and organisa
tion, not to speak of cultural and social contexts.

Secondly, experience shows that difficulties arise in organisations with a sharp
functional division between "expression level workers" and "content level workers"
(cf. section 2.2.1.). However, these difficulties can be used productively since
they may be used to question this division of labour.

Toirdly, there are applications, notably automatic control of machines, where the
edp-system is not used for communication, since the receiver of the signals is nota
human but a machine. However, such systems are sometimes embedded in systems that
certainly do function as a medium for communication between humans. In some plant
control systems there is an intricate interplay between machine-generated and
human-generated signals.

3.2. Conclusion

Semiotica and informaties share several common features. Our analysis has shown:

that the application of edp may entail considerable changes in the language of
the professional groups involved;
that semiotics may contribute to new knowledge which may be utilised construc
tively in the development of edp-based systems.

Future work in this field could aim at developing new methods for descriptions of
work processes and systems from a communication perspective.

FOOTNOTES

1
) The following expos1t1on is mainly based on Eco (1976), which again draws heavily

on Hjelmslev (1961) 2) cf. Eco's "theory of sign production" and "theory of codes".

REFERENCES

Andersen, P.B., Nielsby, 0, (1981). PROTEUS - en programmeringsfilosofi baseret pa
selvforvaltning (PROTEUS a Programming Philosophy based on Self-management).
SAML 8. Institute of Applied and Mathematical Linguistics, Copenhagen.

Andersen, P.B., Kjrer, A. (1982). Artificial Intelligence and Self-management. Jour
nal of Pragmatics 3/4: 323-353.

Barthes, R. (1957). Mythologies, Seuil, Paris.
Bendix, E.H, (1966). Componential analysis of general vocabulary: the semantic

structure of a set of verbs in English, Hindi, and Japanese. Indiana University,
Bloomington.

247

(4)
\ . . .

Budde, R. et al. 198 • Approaches to Prototyping. Springer-Verlag, Berlin.
Bundgaard, J . et al. (1981). Kontor-Auci>mations-Systemer (KAS) - Et studieprojekt

(Office Automation Systems a 'study Project), Dansk Datamatik Center,
Copenhagen.

Ciborra, C. (1981). Information Systems and ~ransaction Architecture. International
Journal of Policy Analysis and Information ~ystems. 5.

Clark, H.H., Clark, E.V. (1977). Psychology and Language. Hartcourt Brace Jovano
vich, New York.

The Danish Nurses Organisation. (1982). EDP- Handbook for Nurses. Public Services
International. Feltham,

Eco, U. (1976). A Theory of Semiotica. lndiana University Press,
Floyd, C., Keil, R. (1983). Adapting Software Development for Systems Design with

the User. Systems Design for, with, and by the Users. Briefs, Ciborra, Schneider
(Eds). North-Holland, Amsterdam.

Hjelmslev, L. (1961). Prolongema toa Theory of Language, University of Wisconsin,
Madison.

Hjelmslev, L. (1959). Essais linguistiqies. Nordisk Sprog- og Kulturforlag,
Copenhagen.

Larsen, S.F. (1980). Egocentrisk tale, begrebsstruktur og semantisk udvikling (Ego
centrical Speech, Concept Structure, and Semantic Development). Nordisk Psyko
logi 32: 55-73.

Larsen, S.F. (1981). Knowledge Updating. Psychological Reports. lnstitute of
Psychology, University of Aarhus, Aarhus,

Larsen, S.F. (In press). Specific Background Knowledge and Knowledge Updating.
Foregrounding Background. Allwood and Hjelmquist (eds). Doxa, Lund.

Lyons, J. (1977). Semantica. Cambridge University Press, Cambridge.
Mathiassen, L. (1981). Systemudvikling og systemudviklingsmetode (Systems Develop

ment and Systems Development Method). DAIM! PB-136. Department of Computer Sci
ence, University of Aarhus, Aarhus.

Nurminen, M.I. (no date). In Search for the Purpose of Information in Information
Systems. lnstitute of Information Sciences, Bergen.

Sandewall et al. (1982). Stepwise Structuring, a Style of Life for Flexible
Software. Software Systems Research Center, LinkÖping.

Searle, J.R. (1969). Speech Acts. Cambridge University Press, London,

WHAT DOES REAL WORK ANALYSIS TELL US ABOUT SYSTEM
DESIGN?

Leonardo Pinsky and Bernard Pavard

Laboratoire de Physiologie du Travail
Conservatoire National des Arts et Mètiers, Paris

France

Human-computer interface design is explicitly or implicitly based on specific
representations of the user's act1v1ty. Several strategies are used for system
design. Some of them are based on "user' s models" (for example: Cuff, 1980), wi:J.ich
are not usually precise enough to predict the numerous difficulties in the system
use, Others rely on general principles to elaborate command languages or to struc
ture the man computer dialogue. TI1ese general principles may be:

(a) the simplicity and coherence of the commands,
(b) the "natural" aspect of the actions during dialogue,
(c) the personalisation of the human-computer interface.

Toe design of command languages based on an analogy with natural languages, whether
verbal (Treu, 1982; Landauer et al., 1980; Ledgard et al., 1980), graphic (Buxton,
1982) or musical (Buxton et al., 1983) does not systematically lead to solutions
which will be appropriate for the functions the language is to fulfill (Fitter,
1979).

In general, these principles come from either informal observations of the use of
different systems, or from the designer's intuition (Treu, 1976). This procedure may
result in an incorrect representation of the operator's real activity and thus in
models w~ich have little to do with reality, leading to errors in the design. A
correct representation of the activity is needed from the appropriate which charac
teristics of the system to be designed can be deduced. Several attempts have been
made to develop general models for particular cases. Card et al., 1983, used a very
detailed model of the activity of an operator while working on a word-processing
tas k. Al though this model provides precise data on the operator' s behaviour, i t only
concerns tasks for which most of the aspects of the activity have been defined in
advance, Although analysis of procedural errors is essential for the improvement of
a system, this model cannot predict them.

TI1is paper means to show that work analysis can help to elaborate activity represen
tations wide enough to fulfill design requirements. Work analysis is not only con
cerned with performance, but also tries to define the structure of the activity as
well as the cognitive processes of the operator within the real work situation. It
aims at describing the complexity of the activity without making any a priori reduc
tion. In order to gather relevant data from work analysis, the ergonomist must deal
with a situation (man+ computer+ task) closely related to the one he has to
design. In this case, the ergonomie work proceeds in degrees: the designer does
several ergonomie experiments in the work place in -order to improve the description
of the functional characteristics of the system (see part one).

Work analysis can be integrated in a diffirent way: in the design process it can
provide pertinent data by allowing experiments to take place in a laboratory, in
order to study certain aspects of the cognitive processes involved in specific
tasks. The difficulty associated with this approach depends on the choice of the
variables used for the experiment. For validity's sake, the experiment must consider

249

constraints due to both the environment and the task. But, in fact, the environmen
tal constraints which affect the cognitive processes are often difficult to define
in advance. Tuis experimental approach proceeds by "reducing" the real situation,
but this "reduction" is made "aposteriori", that is to say: after identification of
the constraints due to the environment. Tuis paper describes two examples of the
ergonomie research which is being undertaken in our laboratory, each within their
own context:

(a) a close relation with a team of designers working on a particular on-line data
coding system,

(b) amore general study aiming at the design of text composition systems.

Torough these two examples, we will point out the two aspects of work analysis con
tribution to system design.

1. ON-LINE DATA CODING TASK

1.1. Circumstances of the ergonomie intervention

A system already existed to perform the on-line data coding (system I). The
ergonomie team was assigned the task of helping the design of a new system (system
II) which would be adapted to the operator. A first analysis of the real situation
(system I) provided guidelines for the design of system II. Wnilst designing this
new system ergonomie experiments with volunteers were used to discover the features
of the future work and its difficulties. The ergonomie experiment is defined in that
way: the experimental situation is as similar to the future work situation as possi
ble and the experimental protocol allows to control some variables (for instance,
the same set of printed forms to be processed was given to the different operators).

1.2. Functioning principles of the on line data coding system II

The operators have to code the information gathered fora survey. We will consider
the coding of the variable "profession": a list of professional categories was
determined before the experiment began, each category having its code. Transferring
data from printed forms to professional categories is a complex operation. The
dialogue witn the computer can be sketched as follows:
The operator transmits a screen-form:

PROFESSION
14C-AE
15A-CPF 5

ELECTRONICAL TECHNICIAN
CANCER HOSPITAL
15C-FONC 5

13-ST 4

Tuis screen-form contains designations (elec tronical/ technician) and coded
values (13-ST 4).

The computer may reply in one of two ways:
- whenever a code is finally assigned, the computer sends back the name of the

proper category.

250

PROFESSION ELECTRONICAL TECHNICIAN 13-ST 4
14C-AE CANCER HOSPITAL
15A-CPF 5 15C-FONC 5
EE27-;-MAINTENANCE TECHNICIANS, ELECTRICITY, ELECTRONICS, AUTOMATISM REPAIR.

- otherwise, it sends back a message:

PROFESSION
14C-AE
15A-CPF 5

MAINTENANCE TECHNICIAN
CANCER HOSPITAL
15C-FONC 5

13-ST 4

MAINTENANCE TECHNICIAN, REPAIR; ASSIGN A VALUE FOLLOWING THE SPECIALITY
ELECTRICITY, ELECTRONICS, RADIO, T.V. ENTER C-EE27
MECANICS ENTER C-ME23
BUILDING, PUBLIC W0RK ENTER T-BTl

The operator must choose one term from the message given.

To facilitate access to the list of designations, the designation used by the
system does not necessarily consider all the words TYPED BY THE OPERATOR. For
example, the operator transmits:

SUPERIOR TECHNICIAN IN ELECTRONICS AND AUTOMATISM

The system will use:

.__ __ __, TECHNICIAN ELECTRONICS

Such a designation begins and ends with blanks at the first and the fourth places.

1.3. Work analysis

Toe operator using the system makes a decision by choosing a category. To do so the
operator instigates actions, that is to say her behaviour is intentional, conscious,
planned and goal directed (see Von Cranach, 1982). In fact, her behaviour is not
only a reaction to the system answers. These actions and their sequence are guided
by a reasoning which is not explicited by the data appearing on the display. There
fore, we added verba! data collected during the operator's work (verbal protocol).

1.4. Description of the operator's reasoning

In order to describe the operator's reasoning, we defined original notions by taking
our inspiration from the "Natural logic" of J .B. Grize 0932). We hereafter give
some characteristics of the operator's reasoning we were able to evidentiate:

(a) Objects
The operator considers two kinds of objects
- the profession of a given person, as it results from the totality of data col

lected from the printed forms,
- the objects sent back by the system: names of the categories and terms of the

messages.
n1ese objects are discursive entities worked out by the operator who will extract
some information end/or combine the selected information with other information.

251

(b) Operations
The operator will use two types of operations on these objects:
- She will bring together different objects. For example:

Profession:

SHEET-IRON WORKER WORKING FOR TilE POST-OFFICE

Message:

SHEET-IRON WORKER FOR CARS, MOTORCYCLES, TRUCKS ENTER CME44
INDUSTRIAL SHEET-IRON WORKER ENTER CME42
SHEET-IRON WORKER FOR VENTILATION, DECORATION, BUILDING ENTER CME64

Verbal protocol:

"Knowing that he works for the post-office, I suppose he repairs the cars of
the Company. It is certainly the case, so I will assign the following code:
CME44".

The operator brings together one term of the message and the profession, on the
basis of a common property: "cars repair".
- She will differentiate between objects, for instance:

Profession:

PASTRY-COOK APPRENTICE

Name of the category:

PASTRY-COOKS OR BAKERS (EXCEPT INDUSTRIAL ACTIVITY)

Verbal protocol:

"It does not fit, because the persen is only an apprentice".

Toe operator differentiates between the name of the category and the profession
because of the absence of the term "apprentice".

'!hese two operations constitute a first step towards the elaboration of an action.
For example, when "bringing together" different objects, the operator will tend to
accept a category or take into account the term of the message. However, ether
operations can be made by the operator upon "bringing together" or "differentiating"
operations. In particular, a differentiation can be reduced, neutralised or just
left aside during operations dealing with something ether than objects, such as the
system functioning or the structure of the list of categories. At this moment
interpretation of the system answers takes place (this interpretation has been
described in a previous paper (Pinsky, 1983)).

1.5. Criteria for ergonomie improvements design

The analysis of the operator's reasoning shows the difficulties caused by an inap
propriate system. We will distinguish three types of difficulties:

(a) Weakness of the reasoning due to an inadequate answer from the system (in gen
eral, a lack of information):
For instance, certain ac tiens of "bringing together" are "poor": the operator
does it on the basis of a unique word present in the profession to be coded and
in the answer of the computer, as she has no ether data at her disposal.

252

(b) Lack of s truc ture of the information to be memorised:
More of ten tilan not, the operator cannot use the re sul ts of previous "differen
tiating" or "bringing together" operations for 6eneralisation. Consequently,
she is obliged to work, not with structured subject matter, but with a certain
nUlllber of specific solutions, case after case, which are very difficult to
memorise. Tnis situation may even prevent the operator from learning how to use
the system properly.

(c) Parasite activities:
The system is supposed to help the operator solve the coding problem. But, in
certain cases, the operator is obliged to perform a series of actions to cope
with the inadequacy of the system answers, without having explored the possibil
ities embedded in the list of categories. Such actions will be referred to as
"parasite activities".

Toe modifications which will be needed to improve the ergonomie value of this sys
tem will be devised not only to eliminate these types of difficulties but also to
provide some form of assistance to operators confronted with codification problems.

1.6. Some examples of ergonomie improvements

(a) Marking the words of the designation actually used by the system:
Tuis supplies the operator with additional information and prevents those
parasite act1v1t1es which were caused by having to identify the words used by
the system. It also widens the scope of possibilities of the two "operations"
bringing together and differentiating, thus helping the decision process.

(b) Contents of the names of the categories and of the terms of the messages:
Tne analysis of the different methods of bringing together or differentiating
provides general principles for the formulation of these items.

(c) Command of differentiation between categories:
The operator must often choose between two categories (she has performed two
bringing together operations). It is not always possible, when editing the
terms of the messages or tne names of the categories, to really differentiate
between two categories. We have therefore proposed a two argument-command (with
the codes of the two categories) which produces a message expressing the differ
ences between the two.

2. DESIGN OF A WORD PROCESSING SYSTEM

2.1. Word processing

Word processing is a general term for several cognitive activities which are very
different in their nature: typing, correction, re-writing, translation, typographic
editing, etc ••• These cognitive activities, as we will see later, are not only
determined by the goals of the task to be done, but also by the characteristics of
the technical system used by the operator. The interaction between technical sys
tems and psychological processes was studied during a letter composition task in
which the subject of the letter was supplied by the experimenter (Gould, 1978;
1982). Gould sees the composition activity as a succession of planning and produc
tion periods. During the planning periods, the author organises his discourse men
tally, whereas during the production periods, he generates the same discourse writ
ten or spoken. Gould observed that the planning period is shorter (in time) when the
production is spoken rather than written. The organisation of the sequences of plan
ning and production periods depends on the choice of the author: a written discourse
implies a very precise sequence of planning and production periods, a spoken one
allows these two kinds of activity to merge. Although the organisation of composi
tion activities (planning, production) varies with the choice of a written or spoken
edition, the semantic or stylistic contents of the final product do not seem to be
influenced by this choice, (Goldberg, 1979, cited in Gould, 1982). But, on the other

•

253

hand, an analysis of a redaction task carried out by journalists of a press agency
(Duraffourg et al., 1982) showed that the use of type-writers or visual displays did
influence the cognitive processes during dispatch redaction. The introduction of
visual displays resulted in an increase of dispatch production and a decrease in
quality. First the analysis of text composition procedures will be used to demon
strate how the introduction of visual displays lead the journalists to re-structure
their sentence planning activity. Toen the relation between the editing constraints
of a technical display and the structure of the final text will be examined on the
basis of the results of an experiment.

2.2. Analysis of redaction processes

In order to gain insight into the redaction processes, every sequence of words
and/or characters processed on the display was recorded. The analysis of such a
linguistic production allowed us not only to compare the initial text with the final
product, but also to track down the intermediary attempts which did not result in a
solution which was acceptable to the journalist. To simplify the analysis, we split
the sentences up into propositions, and the propositions into components. A proposi
tion, by definition, is composed of a theme (subject), a predicate (verb) and one or
several arguments. We made a distinction between main arguments whose presence is
necessary and secondary arguments which are not essential. The secondary arguments
are often used to specify the tempora! or spatial conditions of the main argument.
For example: "John buys some bread at the baker's". We successively find: the theme
(John), the predicate (Buys), the main argument (some bread) and the secondary argu
ment which indicates the place where the action is performed (at the baker's). All
example will be used to illustrate the different strategies used by the operator to
plan and write a sentence. These strategies cannot be detected unless the journalist
uses a visual display. The journalist's task will in this case consist of merging
the two following sentences into a unique sentence: "The principal leader of MIR and
his seven collaborators have been killed yesterday during a fight with the police.
According to the official version, the fight took place when the government security
service got informed of a meeting held by the MIR' s s taff". Figure 1 shows the
first attempts of the journalist to merge these two sentences.

254

by the policc

who rushcd

u

Figt:re 1 First redactional attempts of the journalist. The
numbers indicate word-processing sequence

The numbers indicate the sequence of redaction. We can see that the journalist un
dertakes the redaction process without planning more than two propositions. Figure 2
shows a new attempt of the journalist to compose his sentence, and the final solu
tion. The components outside the circled areas have been inserted between the com
ponents already written on the visual display.

..

The main
leader of MIR

during a
light with

·$
which took place
when it

.• , rushed

were

255

11

. .
1
1 holding a meetinr,

Figure 2 In order to re-write his text, the journalist "1.nserts"
(words outside circled areas) or suppresses some ele
ments of a given linguistic material

TI1is simple example shows that a text processing display induces specific redaction
al procedures:

(a) the planning of the composition is a short-term activity (one or two proposi
tions only);

(b) if a sentence is incorrect, the journalist avoids re-writing it entirely. He
prefers to adopt a problem-solving strategy and to choose the lexical elements
likely to be inserted in the written text available.

Other strategies of composition have been observed. The journalist,
first plans his sentence without the secondary arguments and then,
it, adds these by using the "insert" function.

for instance,
when re-reading

256

2.3. Experimental approach

Work analysis allowed us to establish certain relations between system constraints
and redactional procedures. The experiment aims at analysing these constraints more
systematically and, in particular, the relation between editing functions, the ease
of use and the linguistic structure of the final text.

The editing systems we used for the experiment were either traditional ones like
type-writers, paper-pencil, dictaphone, or systems equipped with specific editing
functions. These specific editing functions are designed to allow working with
linguistic entities of different lengths, such as: propositions, arguments, words,
etc ••• The operator must re-write a text composed of several propositions. Depending
on the experimental conditions, the sequence of the propositions mayor may not
correspond to the natural temporal sequence of the events in the story. To compose a
coherent text, the operator must re-structure the propositions in a chronological
sequence.

The composition procedures have been analysed at four levels (Pavard, 1984): re
structuring of the propositions sequence; secondary arguments processing; organisa
tion of planning and production periods; coherence of the text. We will shortly
analyse these three last points.

(a) Secondary arguments processing:
A sentence contains secondary arguments which, in general, account for the tem
poral or spatial conditions of the events. Work analysis shows that these
secondary argwnents are processed in a specific manner. The experimental ap
proach confir~s this fact, as certain word-processing systems induce the "omis
sion" of secondary arguments (Fig. 3). The texts edited orally lack more than
1/4 of their secondary arguments, although the operators were instructed to give
back the entire information. On the other hand, when using the "puzzle" editor,
the operators process more than 95% of secondary argwnents. This effect is due
to this system's functions which provide additional visual feedback: these parts
of the initial text which have not been used for re-writing are marked.

..

257

SECO ND. AR G. PRIMARY ARG.

% OF
FORGOTTEN

COMPONENTS

30

20

10

0
V, -l
't)

0 -<
;,<; :::2
m z

C) z

:c '15 V, -l :c > C 't) -< > z N 0 't) z
0 N ;,<; z 0 r m
E m z C)

E . ;:o ;:o
:::j :::j
z z
C) C)

Figure 3 Percentage of sentence components "omitted" during re
writing activity, depending on w~e text edition system

(b) Organisation of the planning and production periods:

'15
C
N
N
r
m .

The amount and kind of organisation depends on the text editing system employed.
Our results are in accordance with those of other studies. Spoken composition is
the quickest (Fig. 4). The orator plans his text both before and during the pro
duction period. Although the coherence of texts orally processed is similar to
the one of texts processed with other methods, the operator only considers a
subset of the secondary arguments involved. Tuis particularity of the spoken
edition may be due to the absence of a physical representation of the text pro
duced. The operator can only process a limited nwnber of propositions or argu
ments at a time.

TIME
(min.)

4

3

2

1

0

Cat

Ph

TYPING

258

Cat

Ph

SPOKEN EDIT.

~ PLANIFICA TION

• PRODUCTION

HAND WRITING

Figure 4 Organisation of planning and production periods,
depending on the text edition system. Two texts (Ph and
Cat) with different thematic structures have been used.

(c) Coherence of the text:
Among the quality criteria fora text, inter-propositional coherence is one of
the most important. In order to be acceptable, a text must be composed of propo
sitions linked together, either explicitly or implicitly. Nevertheless, a text
whose propositions are linked together by "connectors" is not necessarily
correct in terms of semantica. There are specific rules which limit the possible
combinations of several "connectors" (a connector is a grammatical element which
connects different propositions, such as: and, because, in order to, as,
etc •••). The operator must respect these rules, or else he will produce a text
which is semantically unacceptable. For instance, we could observe a competition
effect between the respect of text coherence and the respect of connector combi
nation rules. Some systems induce composition strategies within which coherence
is the main concern, at the expense of semantical acceptability.

3. CONCLUSION

These two studies have shown how work analysis focuses on the complexity of
activity. Text composition is not only analysed in terms of the use of editing func
tions, but more widely, in terms of psycho-linguistic processes . On line data coding
is seen as a process of elaborating a decision in accordance with the system's
answers, and not only as a sequence of transactions. The work analysis methods we
used show two ways to find the relation between cognitive processes and characteris
tics of the system. They both evolve from the recording of the operator's
behaviour. In one case, we studied the unconscious psycholinguistic procedures,
through a comparative method (several text composition systems were used).

259

In the other case, we added verbal information to the behaviour recordings, thus
focusing on the conscious reasonings underlying the actions and defining their rela
tion with the use of a display. These two studies also show the importance of
experimentation for system design when based on work analysis. It can be most use
ful, either during the design process, by using a series of ergonomie experiments in
situations which resemble the future work situation as much as possible, or in tne
laboratory, provided that its results will be replaced in the context of the real
work situation, which can be done thanks toa previous work analysis.

REFERENCES

Buxton, W., Sniderman, R., Reeves, W., Patel, S.,Baecker, J. (1979). The evolution
of the SSSP score editing tools. Computer Music Journal, 3, 4, 14-26.

Buxton, W., (1982). An informal study of selection positioning tasks. Graphics
Interface 82, 323-328.

Buxton, W.,Lamb, M.R., Sherman, D., Smith, K.C. (1983). Towards a comprehensive user
interface management system. Computer Graphics, 17.

Cranach Von, M. (1982). The psychological study of goal-directed action: basic
issues. The analysis of action - recent theoretica! and empirica! advance. Von
Cranach M., and Harre R. (eds). Cambridge University Press.

Cuff R.N. (1980). On casual users. International Journal of Man-Machine Studies, 12,
163-187.

Duraffourg, J., Guerin, F., Pavard, B.,
1/ladis, A. (1982). Informatisation
Paris.

Dejean, P.H., Launay, F., Pretto, A.,
et transformation du travial. A.N.A.C.T.,

Fitter, M. (1979). Towards more "natura!" interactive sys tems. International Journal
of Man-Machine Studies, 11, 339.

Gould, J.D. (1978). An experimental study of writing, dictating, and speaking.
Attention and performance VII. Requin J. (Ed.) . Erlbaum and Assoc., Hillsdale.
New Jersey. 299-319.

Gould, J.D. (1982). Writing and speaking letters and messages. International Journal
of Man-Machine Studies, 16, 147-171.

Grize, J.B. (1982). De la logique à l'argumentation. Droz, Genève, Paris.
Landauer, T. K., Galotti, K.N., Hartwell, S. (1980). A computer command by any other

name: a study of text editing terms. Bell Laboratories Report.
Ledgard, H.F., Whiteside, J.A., Singer, A., Seymour, W. (1980). The natura! language

on interactive systems. Communications of the A.C.M., 23, 556.
Pavard, B. (1984). Approche ergonomique de la conception de systèmes de traitement

de textes, in Rapport C.N.R.S. - ATP-955 III, Paris.
Pinsky, L. (1983). What kind of "Dialogue" is it when working with a computer? The

psychology of computer use. T.R . G. Green, S.J. Payne, G.C. van der Veer (eds).
Academie Press, 29-40.

Treu, S. (1982). Uniformity in user-computer interaction languages: a compromise
solution. International Journal of Man-Machine Studies, 16, 183-210.

PSYCHOLOGICAL SELECTION OF PERSONNEL FOR DATA
PROCESSING PROFESSIONS

Horia Pitariu

Universitatea Cluj-Napoca
Roumania

The introduction and implementation of computers in Roumanian society nave been
phased, following a programme which will result in a national date processing sys
tem. In order to achieve this goal electrical data processing equipment is being
constructed and training programmes are being given to "selected" candidates. These
training programmes include intensive courses for analyst-programmers, junior pro
grammers, card-punch and computer operators. The psychological selection method by
whicn the trainers are chosen from the large number of candidates with their diverse
backgrounds, is the subject of this study.

l. PSYCHOLvGICAL SELECTION OF ANALYST-PROGRAMMERS AND JUNIOR-PROGRAMMERS

Psychological studies of analysis and programming activity have been made by authors
from various countries (Hoc, 1374-1975; McNamara and Hughes, 1961; Moulin, 1971;
Lindell, 197d; Strizenec, 1973; Szafraniec, 1975). Briefly, the analyst is a person
who formulates the problem - sometimes very spontaneously and informally -, inter
prets the information presented as data, gives it a form and assigns it a processing
method. He has a good knowledge of data processing, a broad basic background and
may be specialised in a particular field of application (Arsac, 1970). Programming
is restricted to the activity of writing a programme as economically as possible.
The novelty of approaches and solutions is characteristic of analyst-programmer's
function, as opposed to standardised work schemes. lnvestigation has shown that
certain psycnological factors are common to the personalities of both the analysts
and the programmers, whilst the analyst's personality has shown to be more varied
and com:t)lex.

1.1. Subjects sample

The research was carried out on a sample of 224 subjects, participants in post
graduate data processing courses: 28% economists, 36% engineers and 37% teachers
(physicists and mathematicians). The engineers were from different industrial units
each with their own speciality and knowledge of the problems specific to their unit
which is very important for the analyst/analysis job. The age of the participants
was 28.7 years !4.8. Seniority ranged from 1 to 15 years.

Tne set of participants in the courses for junior programmer jobs consisted of 69
subjects, their average age being 23 years +6 . 7.

1.2. Job performance ratings

Without sticking to one type of criterion, it is to be emphasised tnat our orienta
tion was to detect a proximal, "statie" criterion, with a general, multidimensional
character, but with possibilities for being changed into unidimensional one,

..

261

according to the concrete conditions offered by the research. To achieve this, the
grades obtained by the students during the schooling yeriod in knowledge tests, pro
ject and final examination, as well as a rating scale were used.

1.3. Choice and validity of psychological tests

The test battery we chose is the Computer Programmer Aptitude Battery (CPAB), worked
out by J.M. Palormo (1967). The battery consists of five subtests: Verbal Meaning
(VM), (a test of communications skill; vocabulary commonly used in mathematical,
business, and system engineering literature), Reasoning - R (an ability test on
translation of ideas and operations from word problems into mathematical notations),
Letter Series - LS (a test of abstract reasoning ability, finding a pattern in the
given series of letters), Number Ability - NA (measuring facility in using numbers;
ability to quickly estimate reasonable answers to computations), Diagramming - D
(measuring the ability to analyse a problem and order the solution steps in a logi
cal sequence). The reliability coefficient of the total battery score is .95
(Palormo, 1967). The Domino 48/70 (D 48/70)(1961) was also added, and the Domino
48/70 and Abstract Reasoning (AR) (subtest of the DAT battery), tests for junior
programmers. Domino 48/70 is a nonverbal general intelligence test similar to
Raven's Progressive Matrices. It is made up of 44 problems that consist each of a
group of dominoes arranged according toa certain rule. The subject is required to
find the rule for completing the arrangement of the series. Tne reliability coeffi
cients are .89 (D 48) and .90 (D 70). Factor analysis of the test battery revealed
the existence of two factors which covered 55% and 15% respectively, of the vari
ance. The former corresponds toa general factor, analogous to Spearman's "g" fac
tor, named "Intellectual potential" or "Efficiency in analysis programming"; the
latter is a bipolar factor, "Verbal reasoning - serial-algorithmic reasoning".

The set of subjects which formed the object of our validation studies consisted of
participants in the post-graduate and high-school- graduate course in data process
ing. The psychometrie characteristics are mentioned in table 1.

Analyst-programmers Junior-
programmers

Group I Group II Group III Group IV
(n=40) (n=47) (n=64) (n=57) (n=69)

Variables M SD M SD M SD M SD M SD
Age 25.50 3.32 28.29 4.24 28.84 5.65 28.30 5.43 28.00 6.71
CPAB - VM 18.89 7.27 14.47 5.99 14.83 5.26 14.70 6.14 10.07 4.74
CPAB - R 10.00 3.39 11.68 5.00 12.29 4.38 12.00 4.48 6.45 3.48
CPAB - LS 7.35 3.68 9.06 4.97 10.23 3.86 9.53 4.28 6.60 3.45
CPAB - NA 12.07 4.08 13.47 4.75 12.70 4.34 13. 77 4.82 8.87 3.35
CPAB - D 15.95 6.67 16.94 9.08 16.66 7.57 16.86 8.66 8.65 5.64
Domino 48/70 27.93 6.01 28.55 6.91 28.06 5.23 27.25 5.12 24.28 6.26
DAT-Abstr.R. 34.25 8.27
Criteria 53.73 20.56 48. 77 17.30 3.03 1.10 6.65 1.53 3.01 1.08

Table l Psychometrie and criteria performance of the analyst-
programmer and junior-programmer groups (In Group I &

II, the criterion consisted of the overall score of the
appraisal card, in Group III of forced-choice rating,
and in Group IV, of combining the grades obtained in the
course modules).

Test
CPAB - VM
CPAB - R
CPAB - LS
CPAB - NA
CPAB - D
Domino 43/70
DAT-Abstr.R.
Mult. corr.

Table 2

262

Analyst-programmers

Group I Group II Group III Group IV
(n=40) (n=47) (n=64) (n=57)

r R r R r R r R
.08 .08 .45** .47** .08 .09 .26* .26*
.46** .57** .49** .49** .41** .42** .30* .30*
.46** .55** .22 .22 .30** .35** . 37** .39**
.19 .21 .35* .35* .39** .41** .19 .19
.59** .69** .53** .53** .35** .39** .57** .57**
.51** .59** .34* .36* .34** .39** .26* .28*

.69 .61 .54 .58

Correlations (r) of test performances with success in
data processing courses and the correlations corrected
for restriction of range (R). (* p=.05; ** p=.01)

Junior
programmers

(n=69)
r R

.48** .47**

.55** .39**

.28* .29*

.29* .29*

.35** .35**

.49** .56**

.51** .55**
.78

In the validation of the predictors used for psychological selection, an instrument
was derived which did not easily alter its characteristics and from which the pred
ictions were as stable as possible despite the lapse of time. To achieve this, the
validation of the test battery used for the selection of analyst-programmers
included four successive cross-validations, corresponding to a similar number of
post-graduate courses that were investigated. Table 2 is a synthesis of the prognos
tic value of the psychological tests. The analysis of the results yielded by the
four cross-validations enables us to draw the conclusion that the VM and NA sub
tests are less reliable when compared to the rest of the tests. The overall vali
dity of the battery, estimated by the multiple correlation coefficient, ranges from
.54 to .69. For junior-programmers, the overall validity of the test battery was
.78.

Tlle gain achieved by using the psychological tests is 20%
and 30i. for junior-programmers. It is advisable that only
ine 7) and respectively 79% chance of success (stanine 5)
courses (Pitariu, 1977; Pitariu, 1978) .

for analyst-programmers
those who have 70% (stan
should be admitted to

2. PSYCHOLOGICAL SELECTION Ai~ TRAINING OF CARD-PUNCH OPERATORS

There have been some attempts at validating tests of psychological selection but in
our situation they were not very successful and, due to the use of various types of
card-punch machines, treated a diverse relationship between man and machine. The
research in question is therefore concurrent with the setting up of an adequate
selection and training system, beginning with a work place supplied with up-to-date
equipment and tasks.

2.1. Psychological analysis of the profession

Initially psychological analysis of the work was to ascertain the specific errors
made in the punching activity. Lahy and Korngold-Pacaud (1936) distinguish three
categories of errors: gap errors - considered as most common, punch errors, reading
errors, i.e. transposition of figures (figures wrongly remembered; incorrect reading
owing to the document). Durey (1960) has emphasised five error types: reading,
reversal, double punching, omission and shifting of fingers in different directions.
A sample where alphanumerical material was used, enabled Kirchner and Banas (1961)
to discover four main error types: spatial - 47% (pressing an adjacent key); percep
tual - 25Ï. (punching an "R" instead a "P"); reversal - 3% (punching a "25" instead a

263

"52" - the digits being reversed); sequential - 25% (the operator became one column
behind or one ahead with the result that a whole sequence of data was punched into
the wrong column). In another study, Kirchner (1966) regrouped errors in two types:
perceptual - 56%; and spatial - 44% (r = .72). A work sample which we administered
to professional operators revealed the following error types: perceptual errors
(wrong reading of the source document) - 53%; sequential and reversal errors - 14%;
and errors of operation (pressing of an adjacent key, wrong operation of
"alpha/numeric" key) - 33% (Pitariu, 1976).

The analysis of punching errors points to their location in tlle perceptive motor
speed and attention fields. Further details can be obtained only by an analytic
study of the operations carried out in the process of work.

A synthesis of the psychological work analysis data concluded that the persons suit
able for a key-punch profession should be young high-school graduates with or
without a diploma, between the age of 18 and 25, endowed with an average intelli
gence, capable of resisting monotony as well as concentrating attention, and pos
sessing a good emotional stability. Persons having a good capacity for motor learn
ing, hand coordination and finger dexterity will be preferred (persons with synk
inesis cannot practise this profession, nor those with anatomopathologic distortions
of hands or spline). Persons who are conscientious when accomplishing work tasks,
wllo are receptive to oral or written instructions, and who easily accept supervision
are also to be preferred.

2.2. Validation of test battery for key-punch operators

Ten tests were selected at first, from among which five have been retained as signi
ficant: Test of unremitting attention (UA)(Ricossay, 1960), Tapping (T), Test of
distributive attention (DA), Test of simple arithmetic abilities (AA) and Domino 48
(D 48) (1961). The factor analysis of tests revealed three factors:

(a) capacity of effort, attention concentration in the conditions of an intense
activity (explained 38% of the variance);

(b) perceptual structuring, opposed to finger dexterity (explained 23% of tne vari-
ance);

(c) a psychomotor factor (explained 19% of the variance).

The concurrent validation was initiated with a group of 50 key-punch operators 20 to
25 years old. To ascertain the validity of the tests, we have considered that a
relevant criterion, fairly complete and capable of discriminating the operators from
one anoti~er, can be set up by combining professional success reflected by the punch
ing speed index and accuracy index, with estimations given by immediate supervisors.
Consequently, a rating scale ranging from 1 to 10 was worked out. The arithmetic
mean of the marks was used as a criterion. Psychometrical performance and validity
coefficients are illustrated in table 3.
The test battery used for selecting key-punch operators has a multiple correlation
coefficient of .65. In practice, the subjects "admitted" are those whose overall
score is more than stanine 5, their average success chance being 85Î..

Test

Test of unremitting attention:
- rhythm imposed Slow+Fast
- rhythm imposed Fast
Tapping:
- first pair of fingers (T1)
- second pair of ringers (T

2
)

Test of distributive attention
Test of arithmetic abilities
Domino 48
Multiple correlation
Regression equation:

264

Mean

87.50
64.08

53.35
52.15
60.81

271.52
20.27

SD

10.17
12.38

9.31
8.03

14.24
69. 77

6.33
.65

r

.44

.36

.27

.23

.39

.25

.23

R
corrected

.79

.66

.25

.24

.39

.27

.24

X=40(UAs+f) + 7(UAf) + 15(T2) + 2l(T1) + 18(DA) +AA+ 22(D48) - 4748

Table 3 Results of concurrent validity study (n 50)

2.3. Professional training of key-punch operators

Professional training of key-punch operators fellows the psychological selection.
The operators selected attend a course consisting of three modules:

(a) machine operation technique;
(b) introduction to automatic data processing;
(c) development of key-punching skills.

1-

60

50

40

30

ID

SPEED (X)

·..::::---- ACCURACY
'-.. lEP.fRSI

IV

'-,. ACCURACY
(ERRORS)

e,

V TEST

Figure 1 Performance of operators after 1 to 5 weeks

To develop key-punching skills operators practised key handling for a week and then
continued their training with formative character exercises of the type recommended
by Keys and Powell (1970) in addition to routine production activity. The exercises
were based on repeating some patterns until automation is reached. Tuis will after
wards facilitate the "blind" punching technique (e.g. Exercise 1: 4554 5455 4445
5545 4544 ••• ; Exercise 10: 4532 5679 9051 6750 •••) The exercises gradually becallle
more and more difficult, progressively including more elements:

265

A A+B A+B+C A+B+C+D

Performance skills were evaluated by tests at the end of each week.
Figure 1 illustrates the average performance of the operators. Between the
and the last performance evaluation test we obtained an efficiency increase
(t=4.21; p<.01), achieving a final performance of 8080-11040 key strokes ~er
Errors have been reduced to 4% (t=3.76; p(.01) (Pitariu, 1980).

first
of 43%
hour.

Toe strategy of selection and professional training of key-punch operators is illus
trated by the flowchart in Figure 2.

STAl!T

2

3

4

s

•

2

MODUlE 1 11 WEEK)
BASIC OPEl!ATlON Of THt

KEY-P\JOI

TRA-0 l"IIOGII»-

EXERC1CES A&I

INTIIIODUCTION 10
EX.1& 2/TESf 1

DATA PIIOCESSING

EX.JU/TEST 1

EX.5& &/ TtST 1

EX.7& I/TtST IV

EX. I& 10/TtST V

MODUI.E ft MODULE 111

~YSISOF~
l!YTll~&PEIIS0MIEI.

COMMISION

3

Figure 2 Flowchart of key-punch personnel selection and train
ing process

3. SELECTION OF COMPUTER OP~RATORS

,.
a:

;:
il

a;

A detailed analysis of the computers operator's activity showed that supervising the
sys tem operation consumed 26% of his time and work organisation 26%. The operator
appears to perform a sequence of perceptive-motor actions. In fact these
perceptive-motor actions are the consequence of a complex decision process resulting
from the work to be performed and the capabilities of the computer. A few of the
psycho-physiological traits and attributes that can be used to characterise an
operator and which formed the basis of the psychological test battery used for
selection purposes are: integrity of the visual and auditory senses, accuracy and
decisiveness of eye-hand coordination and of motor response. Toe operator is charac
terised by a keen sense of observation and a short response time in decision making,
in a tense atmosphere with frequent conflict situations associated to the system

266

functioning. From an intellectual point of view, the operator's psychological qual
ities are similar to those of the programmer' s (clarity and flexibility of thinking,
logical planning of actions, fine analytical-synthetical capacity etc.).

Validation of the psychological tests used in selection is a difficult task because
of the restricted number of operators (N = 21, mean 25.6 years). We only used
psychological tests that were administered individually to facilitate the clinical
analysis of the data obtained. Tnus, the psychometrie score has played a secondary
role, the behaviour analysis being used as the selection basis (thinking strategy,
logical solutions to problems of a non-verbal character, emotional equilibrium
etc.).

Of the tests selected, . the following have been retained as having a significant
validation (the criterion was a ranking of the performance of the operators on their
job) B-20 (r=.50); B-101 (r=.45); SNB - duration of errors (r=-.47) (tests worked
out by Prof. Bonnardel); and Finger dexterity (test of the GATB) (r=.46). The
overall validity of the test battery is R1(2345)= .69.

The employment procedure involves the following phases:

(a) Analysis of personnel data;
(b) Knowledge test for experienced applicants;
(c) Psychological examination;
(d) Interview with examination commission.

Each phase must be satisfied. The "admittedlf/"rejected" decision in the psychologi
cal exam is taken on the basis of the qualitative analysis of the profile: thinking
strategy and speed, the logic of non-verbal problem solving, emotional balance etc.

4. CONCLUSIONS

The investigation answered a major question that confronts the national economy of
Roumania, namely the problem of providing efficient personnel for informaties. The
psychological selection is but a subroutine of a vast programme of professional
training. It represents the first step in controlling the human factor, a step which
minimises the risk of making an erroneous prediction.

The psychological exam depends on the objective. In the case of post-university and
high-school-graduate courses for analyst/junior-programmers' training, the objective
of the selection exam was to eliminate the persons unsuitable for this job and to
organise a homogeneous group capable of facing the rigour of an intensive course. Of
course, when hiring trained personnel for analyst-programmer or junior-programmer
jobs, the ability examination is of much lower importance than the psychological
exam which is centered upon other functions and is correlated to professional use.

Concerning key-punch operators and computer operators the psychological examination
plays a prominent role, the psychological selection being necessary because that the
professional training is carried out on the job. Wnen hiring "selected" personnel, a
psychological exam is still useful, with the emphasis shifting in this context to
the candidates' capacities for socio-professional integration in the work team.

REFERENCES

Arsac, J. (1970). La science informatique. Dunod, Paria.

267

Durey, D. (1960). Formation professionnelle fondèe sur !'analyse de travail. La
formation des mècanographes. Psychologie Française, V, 187-212.

Hoc, J.M. (1974). Quelques remarques sur l'analyste-programmeur. Bulletin de Psycho
logie, 318, 857-859.

Keys, W.J., Powell, C.H. (1970). A Handbook of Modern Keypunch Operation. Canfield
Press, San Fransico.

Kirchner, W.K. (1966). Analysis and Prediction of Performance of Experienced
Keypunch Operators. Journal of Industrial Psychology, IV, 48-52.

Kirchner, W.K., Banas P. (1961). Prediction of Keypunch operator performance. Per
sonnel Administration, 24, 34-26.

Lahy, J.M., Korngold-Pacaud S. (1936). Sèlection des opèratrices des machines à per
former "Samas" et "Hollerith". Le Travail Humain, IV, 230-290.

Lindell, J. (1973). Analysis of Computer Programming Work. Reports from the Depart
ment of Psychology, No. 545. The University of Stockholm.

McNamar, W.J., Hughes J.L. (1961). A Review of Research on the Selection of Computer
Programmers. Personnel Psychology, 14, 39-51.

Moulin, M. (1971). La sèlection des analystes-programmeurs dans l'administration des
postes et tèlècommunications. Toèse, Paris.

Palormo, J.M. (1967). Computer Programmer Aptitude Battery. SRA, Chicago.
Pitariu, H. (1976). Psychological Selection of Keypunch Operators. Revue Roumaine

des Sciences Sociales, Sèrie de Psychologie, 20.
Pitariu, H. (1977). La sèlection psychologique du personnel pour les professions du

domaine de l'informatique. Le Travail Humain, 40, 131-140.
Pitariu, H. (1978). Psychological Selection of Analyst-Programmers and assistant

programmers. Revue Roumaine des Sciences Sociales, Sèrie de Psychologie, 22,
185-198.

Pitariu, H. (1980). Une expèrience de sèlection et de formation professionnelle
rapide des opèratrices mècanographes. Bulletin de Psychologie, 344, 431-436.

Ricossay, G. (1960). Etude sur le test d'attention soutenue. La machine-outil
Française, 153-158.

Strizenec, M. (1971). Psychological Analysis of Work and Selection of Computer
Operators and Programmers. Studia Psychologica, 15, 194-205.

Szafraniec, H. (1975). A Preliminary Job Analysis of the Computer Programmer and
System Analyst. Polish Psychological Bulletin, 6, 217-226.

Test D 48. (1961). Centre de Psychologie Appliquee, Paris.

CONTRIBUTORS

Allard, R. Centre for the study of knowledge processes, Uppsala University, Box 227,
S 75104 Uppsala, Sweden,

Andersen, P.B, Computer Science Dept., Aarhus University, Ny Munkegade, DK 8000
Aarhus C, Denmark.

Beishuizen, J,J, Subfaculteit Psychologie der Vrije Universiteit, De Boelelaan 1115
Prov. I. Cll3, 1081 lfV Amsterdam, Netherlands.

du Boulay, B, Cognitive Studies Programme, Arts Building, University of Sussex, Fal
mer, Brighton, UK.

Cavallo, V. Laboratoire de Psychologie de l'Apprentissage, CNRS, IBHOP, rue des
Gèraniums, 13014 Marseille, France.

Clegg, C.W. MRC/ESRC Social and Applied Psychology Unit, Department of Psychology,
The University, Sheffield, SlO 2TN, UK.

Deutsch, C. Sociètè OPEFORM, 1 Rue de la Tour, 92240 Malakoff, France.
Falzon, P. lnstitut National de Recherche en Informatique et en Automatique, Domaine

de Voluceau. B.P. 105, 78153 Le Chesnay, France.
Fisher, G. Universität Stuttgart Institut fur Informatik, Herdweg 51, D-7000

Stuttgart, Germany.
Gorny, P. Universität Oldenburg, Ammerländer Heerstrasse 67-99, D-2900 Oldenburg,

Germany.
Green, T.R.G. MRC Applied Psychology Unit, 15 Chaucer Rd, Cambridge, UK.
Haring, G. Institut für Informationsverarbeitung, Technische Universität,

Schiesstattgasse 4a, A-8010 Graz, Austria.
Hoc, J.M. Laboratoire de Psychologie du Travail de l'EPHE (ERA CNRS), 41 rue Gay

Lussac, 75005 Paris, France.
Kemp, N.J. MRC/ESRC Social and Applied Psychology Unit, Department of Psychology,

The University, Sheffield, SlO 2TN, UK,
Kommers, P.A.M. T.H. Twente - TO.-I.S.M., Department of Educational Research Postbus

217, 7500 AE Enschede, Netherlands.
Krasser, Th. Institut für Informationsverarbeitung, Technische Universität,

Schiesstattgasse 4a, A-8010 Graz, Austria.
Lemke, A. Universität Stuttgart, Institut fÜr Informatik, Herdweg 51, D-7000

Stuttgart, Germany.
Lind, M. Centre for the study of knowledge processes, Uppsala University, Box 227, S

75104 Uppsala, Sweden.
Mathiassen, L. Computer Science Dept., Aarhus University, Ny Munkegade, DK 8000

Aarhus C, Denmark.
Matthew, I. Department or Computing Science, University of Aberdeen, UK.
van Muylwijk, B. T.H. Twente, Afd. Toegepaste Onderwijskunde, Postbus 217, 7500 AE

Enschede, Netherlands.
Oberquelle, H. Universität Hamburg, Fachbereich Informatik, Mensch-Maschine

Kommunikation, SchlÜterstrasse 70, D-2000 Hamburg 13, Germany.
Pailhous, J. Laboratoire de Psychologie de l'Apprentissage, CNRS, IBHOP, rue des

Geraniums, 13014 Marseille, France.
Pavard, B. Laboratoire de Physiologie du Travail, Conservatoire National des Arts et

Mètiers, 41 rue Gay-Lussac, 71005 Paris, France.
Peruch, P. Laboratoire de Psychologie de l'Apprentissage, CNRS, IBHOP, rue des

Gèraniums, 13014 Marseille, France.

Pinsky, L. Laboratoire de Pnysiologie du Travial, Conservatoire National des Arts et
Mètiers, 41, rue Gay-Lussac, 75005 Paria, France.

269

Pitariu, H. Universitatea "Babes-Bolyai", Str. Kogàlniceanu 1, 3400 Cluj-Napoca,
Roumania.

Potts, C. Department of Comyuting, Imperia! College of Science and Technology, 180
Queen's Gate, London SW7 2BZ, UK.

Rohr, G. Software ergonomie, IBM-Science-Centre, Tiergartenstrasse 15, D-6900
Heidelberg, Germany.

Sandblad, B. Centre for the study of knowledge processes, Uppsala University, Box
227, S 75104 Uppsala, Sweden.

Schneider, W. Centre for the study of knowledge processes, Uppsala University, Box
227, S 75104 Uppsala, Sweden.

Schwab, T. Universitlt Stuttgart, Institut für Informatik, Herdweg 51, D-7000
Stuttgart, Germany.

Tauber, M.J. Software ergonomie, IBM-Science-Centre, Tiergartenstrasse 15, D-6900
Heidelberg, Germany.

Traunmüller, R. Johannes Kepler Universität Linz, Institut für Informatik, A-4040
Linz-Auhof, Austria.

van der Veer, G.C. Subfaculteit Psychologie der Vrije Universiteit, De Boelelaan
1115 Prov. I. B. 126, 1081 HV Amsterdam, Netherlands.

Waern, Y. Department of Psychology, University of Stockholm, Sweden.
Wall, T.D. MRC/ESRC Social and Applied Psychology Unit, Department of Psychology,

The University, Sheffield, Sl0 2TN, UK.
van de Wolde, G.J.E. T.H. Twente, Afd . Toegepaste Onderwijskunde, Postbus 217, 7500

AE Enschede, Netherlands.
d Ydewalle, G. Department of Psychology, University of Leuven/Louvain, Tiensestraat

102, B -3000 Leuven, Belgium.

	Voorblad
	Proceedings_EACE_1984
	Deel_1
	Deel_2

